0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能芯片发展方向与误区

WpOh_rgznai100 来源:lq 2019-07-13 07:21 次阅读

人工智能发展过程中,算力是一个重要的因素,算力就像是 AI 的燃油,没有燃油,AI 哪也去不了。而为 AI 应用提供算力的,正是各种各样的芯片。而近几年,嗅到 AI 芯片商机的企业纷纷入局,想要从底层算力上获得独立的能力,然而,并不是所有入局的企业都懂得如何才能造出真正的好芯片,因此走进一些误区。在 2019年 CAIS 大会上的演讲《人工智能芯片发展方向与误区》中,赛灵思人工智能业务资深总监姚颂为我们分享了其研发芯片产品的经验,并指出了 AI 芯片的发展方向和一些误区。

姚颂以一个楔子开场:张华考上了北京大学,李萍进了中等技术学校,我在百货公司当售货员,我们都有光明的前途。这就好比 CPU 擅长通用计算,GPU 擅长大规模并行计算,它们都有不同的前途。

误区1:AI芯片概念火,却并无技术突破

姚颂认为,AI 芯片之所以如此火爆,实际上受到多方面因素的影响。首先,我们从互联网时代进入了 AI 的新时代,所有的虚拟应用必须有一个硬件载体作为支撑。但是与此同时,还有其他的原因。在人工智能流派中,深度学习只是一小部分,所以做一颗 AI 芯片是很宽泛的概念。AI 芯片从通用到专用,它的性能和支持的范围各异,其中通用芯片是最难设计的,而专用芯片一定需要钱和时间才能做出来。而做专用的芯片,如深度学习推理芯片,进行专门的应用并不难。

但这里其实有一个误区。我们可以看到,几十种 AI 芯片像潮水一样涌现,但是却只能支持一部分功能,它可能是一个新的概念,但并没有带来实际的技术上的突破。

误区2:衡量 AI 芯片好坏,硬指标不够

除此之外,AI 芯片竞争激烈,大家经常在想到底一颗好的 AI 芯片是怎样的。在实际应用场景中,我们考虑的很多问题是用户体验层面的问题,这对于 AI 芯片同样适用,有人经常讨论芯片的频率是多少,性能多好,价格多贵,但是否这些硬性指标就能衡量一款 AI 芯片的好坏呢?

我们看到,现在芯片分为四大技术路径:CPU、GPU、FPGAASIC,但是 CPU 的开发、功耗、稳定性、灵活性都很好。GPU性能也非常好,正是因为这样一个强有力的工具,才有今天人工智能的夏天。

FPGA 的性能、功耗的表现同样很好,但是开发周期太长。而 ASIC 是专用芯片,专项应用。

这里也有一个问题,赛灵思表示,他们从来不觉得投项目是投技术和商业,而是投产品和商业,是要满足客户的需求,而不是说某一种新的方式,最终用户看的不是新概念,而是产品带来的新指标,以及给用户带来的新体验,这是很重要的事情。

回过头来看,做芯片和做技术都是在做产品。产品分为四个层次,第一个层次就是能用,满足用户的基础功能需求;第二个层次是好用,功能比较完整,性能表现较好;第三层是爱用,让用户体验好;第四点是离不开,在产品之外提供额外的一些附加值。做一颗好的芯片也一样,要做到这四点。

最后,姚颂分享了赛灵思从传统芯片公司转型到一下软件系统公司的过程,并强调了搞定技术实际上离产品大卖才做了 10% 的事情,当有了一个技术指标、想法、设计之后,最后把它变成一个商品,变成一个持续供货、用户认可的产品,背后还有 90% 的体力活苦活要做,把这些做完以后,才能建立一个真正好的产品和商业级氛围。

总结起来,AI 芯片产品是否真的可靠,是否真的好用,这是一个真正衡量产品好坏的标准。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1792

    文章

    47425

    浏览量

    238964
  • 深度学习
    +关注

    关注

    73

    文章

    5507

    浏览量

    121291
  • AI芯片
    +关注

    关注

    17

    文章

    1893

    浏览量

    35101

原文标题:赛灵思:人工智能芯片发展方向与误区

文章出处:【微信号:rgznai100,微信公众号:rgznai100】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    MLOps平台的发展方向

    MLOps平台作为机器学习开发运维一体化的重要工具,其发展方向将深刻影响人工智能技术的普及和应用。下面,是对MLOps平台发展方向的探讨,由AI部落小编整理。
    的头像 发表于 12-31 11:51 74次阅读

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能是计算机科学的一个分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能发展历程可以追溯到上世纪50年代,经
    发表于 11-14 16:39

    未来数字孪生的潜在发展方向

    数字孪生技术是近年来兴起的一种创新技术,它通过创建一个与现实世界中的实体相对应的虚拟副本,实现了对实体的全面监控、分析和预测。随着物联网、大数据、云计算和人工智能等技术的发展,数字孪生的应用范围
    的头像 发表于 10-25 14:58 692次阅读

    智能驾驶的未来发展方向

    智能驾驶的未来发展方向涉及多个层面,包括技术创新、产业链发展、政策法规以及市场应用等。以下是对智能驾驶未来发展方向的介绍: 一、技术创新 高
    的头像 发表于 10-24 09:09 458次阅读

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    探讨了人工智能如何通过技术创新推动能源科学的进步,为未来的可持续发展提供了强大的支持。 首先,书中通过深入浅出的语言,介绍了人工智能在能源领域的基本概念和技术原理。这使得我对人工智能
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    。 4. 对未来生命科学发展的展望 在阅读这一章后,我对未来生命科学的发展充满了期待。我相信,在人工智能技术的推动下,生命科学将取得更加显著的进展。例如,在药物研发领域,AI技术将帮助科学家们更加
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    的同时,确保其公正性、透明度和可持续性,是当前和未来科学研究必须面对的重要课题。此外,培养具备AI技能的科研人才,也是推动这一领域发展的关键。 4. 激发创新思维 阅读这一章,我被深深启发的是人工智能
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V和Arm内核及其定制的机器学习和浮点运算单元,用于处理复杂的人工智能图像处理任务。 四、未来发展趋势 随着人工智能技术的不断发展和普及,RISC-V在
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    每个交叉领域,本书通过案例进行了详尽的介绍,梳理了产业地图,并给出了相关政策启示。 《AI for Science:人工智能驱动科学创新》适合所有关注人工智能技术和产业发展的读者阅读,特别适合材料科学
    发表于 09-09 13:54

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能技术的发展提供有力支持。
    发表于 07-29 17:05

    AGV的发展方向

    AGV自动搬运车是智能制造中的关键设备,具有智能化、自动化特点,助力企业提升效率。国产AGV性价比高,提供全流程解决方案。AGV发展方向包括性能提升、模块化、集成化等,叉车AGV市场逐渐扩大,应用前景广阔。
    的头像 发表于 07-23 17:54 355次阅读
    AGV的<b class='flag-5'>发展方向</b>

    数控加工设备的发展方向是什么

    高精度、高效率、自动化的生产。随着科技的不断进步和市场需求的不断变化,数控加工设备的发展方向也在不断演变。 一、智能化 1.1 自适应控制技术 随着人工智能技术的发展,数控加工设备将更
    的头像 发表于 06-14 16:52 1731次阅读

    嵌入式热门发展方向有哪些?

    片(NRE)成本,减少和ASIC相关的订量,降低芯片多次试制的巨大风险。 总之,嵌入式的发展方向非常广泛,需要结合具体的应用需求来确定。
    发表于 04-11 14:17

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    https://t.elecfans.com/v/27186.html *附件:引体向上测试案例_20240126.pdf 人工智能 工业检测:芯片模组外观检测实训part1 11分40秒 https
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能
    发表于 02-26 10:17