0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

物理学革命与数学眼光精神及应用

中科院半导体所 来源:陈年丽 2019-07-15 10:53 次阅读

今天的文章介绍了1900年前的数学发展史。过去100年来,数学有了很大的发展,除了像微分方程和微分几何这些与经典物理本身有深刻关系的数学以外,还发展出了代数拓扑、代数几何、代数数论、范畴学、几何表示论等极度抽象的数学。而近代数学不是一个仅仅关于“数”的学问。以范畴学为代表的近代数学,更是一门关于关系和结构的抽象学问。有趣的是,近年来,这些看似和现实毫无关系的数学理论,特别是代数拓扑、代数几何和范畴学已经开始和现代物理深度碰撞。

1

物理学革命与数学的引入

历史上物理和数学有着十分深刻的联系。物理的目的之一是了解新的自然现象。而一个新的自然现象之所以新的标志,就是我们连描写它的名字及数学符号都没有。这就是为什么当物理学家有一个真正的新发现时,他/她什么都说不出来,什么都写不出来,也无法进行计算推导。这时候就需要引入新的数学语言来描写新的自然现象。这就是数学和物理之间的深刻联系。正因为如此,每一次物理学的重大革命,其标志都是有新的数学被引入到物理学中来。

第一次物理革命是力学革命,需要研究的物理现象是天体的的运动。牛顿不仅要发明他的万有引力理论,而且还要发明微积分这一套新的数学来描写他的理论。第二次物理革命是电磁革命。麦克斯韦发现了一种新的物质形态——场形态物质。这就是电磁波,也是光波。后来人们发现,这种场形态物质需要用数学的纤维丛理论来描写。第三次物理革命是广义相对论。爱因斯坦发现了第二种场形态物质——引力波。他需要引入数学中的黎曼几何来描写这种新物质。第四次物理革命是量子革命。这次革命揭示出,我们世界中的真实存在,既不是粒子也不是波,但既是粒子又是波。这种莫名其妙却又真实的存在,可以用量子力学来解释,而量子力学则是建立在数学中的线性代数理论之上。

牛顿、麦克斯韦、黎曼、爱因斯坦

我们现在正在经历一场新的物理革命——第二次量子革命。这次革命的主角是量子信息和它们的量子纠缠。这次我们所遇到的新现象,就是很多很多量子比特的纠缠。这种多体量子纠缠的内部结构,正是我们既说不出来,又没有名字的新现象。我们现在正在发展一套新的数学理论(某种形式的范畴学),来试图描写这种新现象。

这次正在进行中的物理学新革命是非常深刻的。因为这次革命试图用纠缠的量子信息来统一所有的物质、所有的基本粒子、所有的相互作用,甚至时空本身。而凝聚态物理中的拓扑序、拓扑物态,以及量子计算中的拓扑量子计算,都是多体量子纠缠的应用。正是通过这些物理研究,我们发现了多体量子纠缠的重要性,并引入了长程量子纠缠这一相关概念。

2

用数学的眼光看物理学

我们刚才用物理的眼光,概括了数学和物理的关系。自牛顿以来,我们都是用分析的眼光看世界,用连续流形、连续场来描写物理现象。特别是爱因斯坦的广义相对论,它是如此的漂亮自然,大家都认为它抓住了宇宙的本质。之后,以几何的眼光看世界成为物理的主流。在这个思路下,物理学家发展了规范场论、量子场论,以及描写所有基本粒子的标准模型。

但完美主流的几何的眼光,并不一定是认识世界的正确方法。从量子革命以来,我们越来越意识到,我们的世界不是连续的,而是离散的。我们应该用代数的眼光看世界。连续的分析,仅仅是离散的代数的一个幻象。就像连续的流体,是许许多多一个个分子集体运动的幻象。这种以代数的眼光看世界的新思想,将颠覆很多目前的主流物理理论,带来物理的第二次量子革命。某种意义上,建立在几何思路之上的广义相对论、规范场论、量子场论太漂亮太完美了,让我们误以为它抓住了宇宙的本质,误导了我们一百多年。

有趣的是,这100多年来,近代数学发展的一条脉络也正是从连续到离散、从分析到代数的脉络,也提出了离散的代数是比连续的分析更本质的观点。60年代由Grothendieck学派发展出来的代数几何理论正是这种思想的代表,代数几何可以看作是实现了连续和离散的统一的几何理论。这和物理学从经典到量子的发展一一相映。而实现统一的语言当然是代数的,更准确的说,是一个超越了集合论的、全新的数学语言,也是代数几何的基础语言:范畴学。

40年代Eilenberg和Mac Lane发展了范畴学,60年代Grothendieck在此基础上发展了代数几何。

3

范畴学的精神

下面让我从一个外行的角度,来粗略介绍一下范畴学的精神。通常,如果我们想要深入了解一个物体,我们会把这个物体分解成越来越小、越来越简单的构件。如果我们可以做到这一点,我们就认为了解了这个物体。这一思想方法就是还原论的思路。这是科学思想方法的一个主流。很多人甚至用它来定义什么叫做“理解”。

但主流并不代表正确。“理解”也可以由另外一种完全不同的方式来实现。我们不试图把物体分成更小更简单的基本构件。我们甚至不去考虑物体的内部结构,也许物体根本就没有什么内部结构。我们试图通过这个物体和其他所有物体的关系和作用,来了解这个物体。

其实,和其他物体的关系和作用,正代表了这个物体所有可能的性质。而一个物体的所有可能性质,也就完全定义了这个物体本身。归根到底,也许我们根本就没有物体,只有一大堆关系。而物体这一抽象的概念,以及物体所有可能的性质,是由这一堆关系来定义的。这就是范畴学的精神。

把这一范畴学的思路应用到认识论,我们发现所谓的“客观存在”,其实是人脑通过观察到的大量的、各种各样的关系,所抽象出来的一个概念。也就是说,我们头脑中的主观印象观察是客观的。而所谓的“客观存在”,反而是主观的。因为我们所观察到的大量的、各种各样的关系不是随机混乱的,这些关系之间有非常强烈的关联。这些强烈的关联赋予我们“客观存在”这一想象(或概念)。吴咏时老师举过一个社会学例子:范畴学的精神正像马克思说过的,人这个个体是通过人和人的关系定义的。所以范畴学是关系学,也是认识世界的一种新方式。

01

我们也可以把范畴学的思路用到物理中对相和相变的理解。两个相之间的相变,就是范畴学中的“关系”。而相这个概念,就是通过所有相变(即“关系”)来定义的。

02

物理学中的第2个例子是量子力学理论。通过量子力学中的波函数来理解我们的量子世界,其实是一种还原论的思路。如果我们要用范畴学的思路来理解我们的量子世界,那我们将像实验物理学家一样,直接考虑各种各样的观测(这些观测对应于我们上面说的关系),而且我们只考虑各种各样的观测。这些观测(关系)之间有很强的关联。通过这些关系之间的关系,我们可以直接理解我们的量子世界。这就是范畴学的思路。

现有的量子理论用的不是这一思路,而是通过对观测之间的关系的总结,抽象出波函数这一概念,代表所谓的“客观存在”。然后我们再通过波函数来理解我们的量子世界。

其实波函数(及其背后的线性代数),仅仅是我们对现有实验观测的一个模型。这一模型不见得唯一,也就是说,可能有另一个理论可以同样有效地描写我们的量子世界。这一模型也不见得正确,也许将来新的实验观测会和现有的模型矛盾。这将迫使我们构造一个新的模型,也就是发展一套新的理论,来描写我们的量子世界。

其实用范畴学的思路来理解我们的量子世界,就是要放弃波函数这一概念。这将有助于我们不受波函数的束缚,来进一步发展量子力学。

03

物理学中第3个例子,就是具有长程纠缠的量子物态。量子物态中的组分有可能有长程纠缠。这些长程纠缠的各种各样的构型,会给出各种各样不同的量子物态[1]。这就是量子物态中所谓的拓扑序(见《拓扑序:看世界的一种新视角 | 众妙之门》)。有长程纠缠的量子物态,是一类全新的物态,有各种想以前想不到的新现象。

陈谐(左)顾正澄(右)和我在一系列工作中提出了长程纠缠和对称保护序的概念,并发展了对称保护序的上同调理论。

长程量子纠缠及其对应的拓扑序,是一个全新的自然现象。我们到底应该用什么样的数学来描写这一新现象?近十几年来的研究发现,张量范畴学和高阶范畴学正是描写长程纠缠(拓扑序)的数学框架。其实拓扑序物态中的拓扑准粒子对应于范畴学中的“实体”(object,即所谓的“客观存在”),而准粒子的交换、融合等操作,对应于范畴学中的关系(morphism)。张量范畴学正巧是描写拓扑准粒子的完备理论。它可描写拓扑序物态中的拓扑准粒子所具有的各种非常新奇的性质,如分数电荷、分数自由度、分数统计,甚至是非阿贝尔统计,等等。正是这些新奇的性质(非阿贝尔统计),使我们可以用拓扑物态进行拓扑量子计算。

吴咏时(左)指出分数统计(准粒子的交换操作)的数学基础是编织群表示。王正汉(右)及其合作者对简单的模张量范畴进行了完全分类。

通过范畴学,我们得到了对拓扑序(即长程纠缠)的全面理解和分类。比如在1维,没有非平凡的拓扑序,也就是说没有长程纠缠,只有短程纠缠。在二维,各种各样的拓扑序可以由一类特殊的张量范畴——模张量范畴——来一一描写[2]。在三维,各种各样的拓扑序可以由一类特殊的融合二阶范畴来一一描写[3]。

兰天(左)、孔良(中)、朱晨畅(右)和我的一系列工作对三维拓扑序进行了完全的分类和构建。

4

代数拓扑在凝聚态物理中的应用

近代数学的另一重要分支——代数拓扑,也在凝聚态物理中有重要的应用。上面提到长程纠缠(即拓扑序)代表了一类新型的量子物态。那么长程纠缠的反面——短程纠缠,应当只能描写那些平庸的、没意思的量子物态。可最近十几年的研究揭示,如果系统有对称性,那么即使是没有拓扑序的短程纠缠的量子物态,也可以是非平凡的。这类非平凡短程纠缠态被称之为“对称保护序”。媒体中常说的拓扑绝缘体[4],就是一种没有拓扑序,但有对称保护序的量子物态。虽然有短程纠缠的对称保护序,没有分数电荷,没有分数自由度,也没有分数统计,但它们会有非平凡的、可以导电导热的边界,这使之成为目前凝聚态物理研究的一个大热点。

Mele(左)和Kane(右)在理论上发现了拓扑绝缘体

而代数拓扑中的上同调理论和示性类理论,正是描写这些短程纠缠(即对称保护序)的数学语言。这些代数拓扑理论使我们对一维有能隙的物态有了完全的理解和分类[5],也使我们对高维的对称保护序有了完全的理解和分类[6]。

有很长一段时间,我们认为所有的物态都可以通过朗道的对称性和对称性破缺理论来理解。为了理解这些物态,为了研究对称性,很多物理学生都学群论。现在我们意识到,还有很多新的物态是超越朗道对称性理论的。为了研究这些新的量子物态及其中的多体量子纠缠,今后许多物理学生,很可能还要学习范畴学和代数拓扑。(其实目前已经有很多物理学生开始学习范畴学、代数拓扑等现代数学理论)。这显示了数学物理的交融和并肩发展。新的数学进入物理,也意味着物理目前正在进行一场改朝换代的新革命。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 几何
    +关注

    关注

    0

    文章

    37

    浏览量

    12345
  • 量子
    +关注

    关注

    0

    文章

    478

    浏览量

    25494
  • 电磁波
    +关注

    关注

    21

    文章

    1454

    浏览量

    53813

原文标题:物理学的新革命——凝聚态物理中的近代数学

文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    2024年诺贝尔物理学奖为何要颁给机器学习?

    电子发烧友网报道(文/黄山明)近日,据新华社报道,瑞典皇家科学院宣布,将2024年诺贝尔物理学奖授予美国科学家约翰·霍普菲尔德(John Hopfield)和英国裔加拿大科学家杰弗里·欣顿
    的头像 发表于 10-10 00:11 3715次阅读

    无所不能的MATLAB|证明曲速引擎的物理学原理

    中随处可见,但这“科学”部分却始终无法实现。 据《大众机械》报道,“研究人员一直对曲速引擎的概念很感兴趣,这一概念由墨西哥物理学家明戈·阿尔库贝利于 1994 年首次提出。”“根据理论上的阿尔库贝利曲速引擎概念,航天器可以通过收缩前方空间和膨胀后方空间来实现超光速飞
    的头像 发表于 12-04 09:50 160次阅读
    无所不能的MATLAB|证明曲速引擎的<b class='flag-5'>物理学</b>原理

    云知声如何迎接大模型2.0时代

    随着ChatGPT的问世,人工智能的发展迎来了一次革命性的转变。2024年,诺贝尔物理学奖、化学奖也均与人工智能相关,这充分印证了AI技术在科学界的重要地位。
    的头像 发表于 10-30 11:12 475次阅读

    AI产业革命的演进路径与未来展望

    在2023年的北京智源大会上,“AI教父”杰弗里·辛顿提出了一个引人深思的问题:如果青蛙创造了人类,现在的主导权会落在谁的手中?他以此警示人们关注人工智能可能带来的潜在风险。然而,一年过去,AI并未走向他担忧的毁灭之路,反而为人类带来了前所未有的荣誉——诺贝尔物理学奖和化学奖。
    的头像 发表于 10-14 14:56 473次阅读

    玩出梦想科技推出革命性安卓系统空间计算机MR

    在科技日新月异的今天,玩出梦想科技以其前瞻性的眼光和不懈的创新精神,于6月25日正式向全球推出了其最新力作——安卓系统空间计算机“玩出梦想MR”。这不仅标志着玩出梦想科技在虚拟现实领域的又一重大突破,也预示着全球科技界将迎来一场全新的
    的头像 发表于 06-28 16:20 363次阅读

    更精确操纵光束:新型超表面设计推动光学物理学发展

    多层自旋多路复用超表面在多路复用衍射神经网络(MDNN)中充当神经元,用于检测和分类矢量结构光束。 在充满活力的光学物理领域,研究人员正在不断突破如何操纵和利用光进行实际应用的界限。 据
    的头像 发表于 06-27 06:27 270次阅读
    更精确操纵光束:新型超表面设计推动光学<b class='flag-5'>物理学</b>发展

    静电计和验电器的区别

    静电计和验电器在物理学中都是用于电荷测量的工具,但它们在结构、工作原理、作用等方面存在显著的区别。
    的头像 发表于 05-20 17:15 3639次阅读

    弧形导轨在自动化设备中的传动原理

    在自动化机械系统中,弧形导轨是一种常见的轨道结构,用于支撑和引导物体沿着指定的弧线运动。其工作原理基于几何学和物理学的原理。
    的头像 发表于 03-30 17:39 704次阅读
    弧形导轨在自动化设备中的传动原理

    南京大学团队首次观测到引力子激发现象

    该科研成果已于北京时间2024年3月28日以“证据表明分数量子霍尔液体中有手性黑格斯模”为题在国际顶尖学术期刊Nature上公开发表。全球的引力子研究一直是物理学界的重大课题,证实其存在将标志着现代物理学及广大科学领域的一次里程碑式突破。
    的头像 发表于 03-28 14:44 591次阅读

    ATA-2168高压放大器用途有哪些方面

    中的关键作用。 一、科学研究 1.1物理学实验 高压放大器在物理学实验中扮演着关键的角色。例如,在核物理实验中,科学家们需要加速和探测高能粒子,这就需要高压放大器来增强探测器的信号。此外,天体
    的头像 发表于 03-14 11:44 396次阅读
    ATA-2168高压放大器用途有哪些方面

    什么是超快激光?超快激光的应用有哪些呢?

    激光的原理早在 1916 年已经由著名物理学家爱因斯坦(Albert Einstein)的受激辐射理论所预言。
    的头像 发表于 03-11 14:36 1655次阅读
    什么是超快激光?超快激光的应用有哪些呢?

    简单介绍电流的单位:安培,安培

    物理学家认为电流从相对正的点流向相对的负点;这称为常规电流或富兰克林电流。
    的头像 发表于 01-30 11:00 2936次阅读

    差示扫描量热仪 紫薯抗性淀粉的制备工艺及物理学特性研究

    温度、比热容及热焓等。紫薯抗性淀粉的制备工艺及物理学特性研究【(1、吉林省农业科学院农产品加工研究所2、吉林农业大学食品科学与工程学院,马林元;李璐;孙洪蕊;刘香英
    的头像 发表于 01-23 10:31 255次阅读
    差示扫描量热仪 紫薯抗性淀粉的制备工艺及<b class='flag-5'>物理学</b>特性研究

    什么是卫星太阳能停电或太阳停电

    太阳停电影响所有卫星系统,它们是可以预测的,它们源于卫星系统运行背后的基本物理学,实际上是任何无线电通信链路。
    发表于 01-10 16:34 493次阅读
    什么是卫星太阳能停电或太阳停电

    Samtec新型AcceleRate mP电源/信号高密度阵列的新视角

    “角度”,这个词每天都出现在我们的生活中,有物理学的角度,如街边的拐角,还有视觉上的角度和观点中的角度~
    的头像 发表于 01-04 10:32 756次阅读
    Samtec新型AcceleRate mP电源/信号高密度阵列的新视角