人脸识别的基本思想是比较类似的,都是要将图像中的特征提取出来,转换到一个合适的子空间里,然后在这个子空间里衡量类似性或分类学习。但问题在于,对客观世界采用怎样协调统一且有成效的表示法?我们要找到怎样合适的子空间,怎样去分类,才能区分不同类,聚集相似的类别?为解决这些问题,衍生出了很多种方法和解决方案。
所以说,我们所说的人脸识别技术是笼统的,事实上,这是一个很多技术和方法的集合。我们不妨依据上面的逻辑结构图来逐步说明。
预处理
人脸图像的预处理,这一步没有太多可说的,主要包括消除噪声、灰度归一化、几何校正等,这些操作一般有现成的算法可以实现,属于比较基本的操作。不过要说明的是,这里主要说的是静态人脸图像的预处理,如果是动态人脸图像的预处理,就比较复杂了,一般是要先将动态人脸图像分割成一组静态人脸图像,然后对人脸进行边缘检测和定位,在做一系列的处理,这里就不展开了。
特征提取
图像特征的提取是比较关键的一步(上文所说的模式空间向特征空间的跨越),但对于图像处理来说也是比较初级的一步。目前关于图像特征提取的方法有很多,但其实我们想一想,通常而言图像的特征还是可以归类的,例如颜色特征、纹理特征、空间关系特征、形状特征等,每一种特征都有匹配的方法,其中有一些比较经典、好用的方法,例如HOG特征法,LBP特征法,Haar特征法等,这里就不一一讲解,所以选取了其中一种——HOG特征法。
HOG特征也叫方向梯度直方图,它是由Navneet Dalal和Bill Triggs在2005年的一篇博士论文中提出的。我们简单来看它是怎么进行的。
我们以这张照片为例,第一步是要将它变成黑白的照片,因为色彩信息在这里对识别并没有帮助。
在这张黑白照片中,我们从单个像素看起,观察它周围的像素,看它是往哪个方向逐渐变暗的,然后用箭头表示这个像素变暗的方向。
如果对每个像素执行这样的操作,这样所有像素都会被这样的箭头取代,它们表示了像素明暗变化的方向。每一个这样的箭头表示明暗梯度。
事实上,对于每一个像素,给定坐标系,我们能够求出它的梯度方向值。计算的方法比较复杂,我们不需要了解,只需要知道这一步是为了捕获目标的轮廓信息,同时进一步弱化光照的干扰。
如果是以这样的方式做提取的话,计算量会很大。所以我们会把图像分割成8x8像素的小方块,叫做一个Cell,然后对每个Cell计算梯度信息,包括梯度的大小和方向。得到的是这个Cell的9维特征向量。
相信到这里大家有些不懂了。在这里再为小伙伴们稍微解释一下,其实这一步的目的是为每个Cell构建梯度方向直方图,直方图就是我们大家熟知的条形统计图,这个直方图中,X轴是将方向划分的区间,Navneet Dalal等人研究表示划分9个区间效果是最好的,如果是180°的方向,每个区间就代表20°。y轴表示某个方向区间内的梯度大小。这样就等于是每个Cell的特征描述符。
图片来源:加州大学旧金山分校图像处理论文
大致就是这个意思。
这里还有一步,就是如果你的图像受到光照的影响比较大,那么还可以将一定的Cell组成一个block,例如2x2个Cell,这样每个block上就是36维的特征向量,然后对这36维特征向量做规范化(具体怎样规范,涉及到高等数学的知识,大家也不需要知道)。
如果我们输入的图像大小是256x512像素,那么就有32x64=2048个Cell,有31x63=1953个block,每个block有36维向量,那么这个图像就有1953x36=70308维向量。这70308维向量就是这个图像的HOG特征向量了。
当然,上面这些步骤你也可都不了解,你只需要知道,最后原始的图像被表示成了HOG的形式,如下图:
然后根据这个HOG形式,在我们的库中找到与已知的一些HOG样式中,看起来最相似的部分。
图像识别
人脸识别技术经过科学家多年的研究和发展,已经形成了多种研究方向和更多种的研究方法,如果我们梳理一下,主要包括基于几何特征的方法、基于模板的方法、基于模型的方法以及其他方法。
基于几何特征的方法是比较早期、传统的方法了,它主要是研究人脸眼睛、鼻子等器官的形状和结构关系的几何描述,以此作为人脸识别的重要特征。
基于模板的方法基本思想是拿已有的模板和图像中同样大小的区域去比对,包括基于相关匹配的方法、特征脸方法、线性判别分析方法、神经网络方法等。
基于模型的方法的方向是对人脸的显著特征进行特征点定位,然后进行人脸的编码,再利用相应的模型进行处理实现人脸识别,例如隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。
-
图像处理
+关注
关注
27文章
1281浏览量
56636 -
人脸识别
+关注
关注
76文章
4005浏览量
81760
原文标题:工控帮-7月电气工程师班火热报名中!
文章出处:【微信号:GKYXT1508,微信公众号:工控云学堂】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论