0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

介绍你需要的图建模论文,图中的各种隐藏知识、强大且复杂的工具

智能感知与物联网技术研究所 来源:陈年丽 2019-07-22 11:41 次阅读

图嵌入、图表征、图分类、图神经网络,这篇文章将介绍你需要的图建模论文,当然它们都有配套实现的。

图是一种非常神奇的表示方式,生活中绝大多数的现象或情境都能用图来表示,例如人际关系网、道路交通网、信息互联网等等。正如马哲介绍事物具有普遍联系性,而图正好能捕捉这种联系,所以用它来描述这个世界是再好不过的方法。

但图这种结构化数据有个麻烦的地方,我们先要有图才能进行后续的计算。但图的搭建并不简单,目前也没有比较好的自动化方法,所以第一步还是需要挺多功夫的。只要各节点及边都确定了,那么图就是一种非常强大且复杂的工具,模型也能推断出图中的各种隐藏知识。

不同时期的图建模

其实,我们可以将图建模分为图神经网络与传统的图模型。其中以前的图建模主要借助 Graph Embedding 为不同的节点学习低维向量表征,这借鉴了 NLP 中词嵌入的思想。而图神经网络借助深度学习进行更强大的图运算与图表征。

Graph Embedding 算法聚焦在如何对网络节点进行低维向量表示,相似的节点在表征空间中更加接近。相比之下,GNN 最大的优势在于它不只可以对一个节点进行语义表示。

例如 GNN 可以表示子图的语义信息,将网络中一小部分节点构成的语义表示出来,这是以前 Graph Embedding 不容易做到的。GNN 还可以在整个图网络上进行信息传播、聚合等建模,也就是说它可以把图网络当成一个整体进行建模。此外,GNN 对单个节点的表示也可以做得更好,因为它可以更好地建模周围节点丰富信息。

在传统图建模中,随机游走、最短路径等图方法会利用符号知识,但这些方法并没有办法很好地利用每个节点的语义信息。而深度学习技术更擅长处理非结构文本、图像等数据。简言之,我们可以将 GNN 看做将深度学习技术应用到符号表示的图数据上,或者说是从非结构化数据扩展到了结构化数据。GNN 能够充分融合符号表示和低维向量表示,发挥两者优势。

图建模论文与代码

在 GitHub 的一项开源工作中,开发者收集了图建模相关的论文与实现,并且从经典的 Graph Embedding、Graph Kernel 到图神经网络都有涉及。它们在图嵌入、图分类、图表征等领域都是非常重要的论文。

项目地址:https://github.com/benedekrozemberczki/awesome-graph-classification

该项目主要收集的论文领域如下所示:

1. Factorization

2. Spectral and Statistical Fingerprints

3. Graph Neural Network

4. Graph Kernels

因式分解法

Learning Graph Representation via Frequent Subgraphs (SDM 2018)

Dang Nguyen, Wei Luo, Tu Dinh Nguyen, Svetha Venkatesh, Dinh Phung

Paper:https://epubs.siam.org/doi/10.1137/1.9781611975321.35

Python:https://github.com/nphdang/GE-FSG

Anonymous Walk Embeddings (ICML 2018)

Sergey Ivanov and Evgeny Burnaev

Paper:https://arxiv.org/pdf/1805.11921.pdf

Python:https://github.com/nd7141/AWE

Graph2vec (MLGWorkshop 2017)

Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar Saminathan

Paper:https://arxiv.org/abs/1707.05005

Python High Performance:https://github.com/benedekrozemberczki/graph2vec

Python Reference:https://github.com/MLDroid/graph2vec_tf

Subgraph2vec (MLGWorkshop 2016)

Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar Saminathan

Paper:https://arxiv.org/abs/1606.08928

Python High Performance:https://github.com/MLDroid/subgraph2vec_gensim

Python Reference:https://github.com/MLDroid/subgraph2vec_tf

Rdf2Vec: RDF Graph Embeddings for Data Mining (ISWC 2016)

Petar Ristoski and Heiko Paulheim

Paper:https://link.springer.com/chapter/10.1007/978-3-319-46523-4_30

Python Reference:https://github.com/airobert/RDF2VecAtWebScale

Deep Graph Kernels (KDD 2015)

Pinar Yanardag and S.V.N. Vishwanathan

Paper:https://dl.acm.org/citation.cfm?id=2783417

Python Reference:https://github.com/pankajk/Deep-Graph-Kernels

Spectral and Statistical Fingerprints

A Simple Yet Effective Baseline for Non-Attribute Graph Classification (ICLR RLPM 2019)

Chen Cai, Yusu Wang

Paper:https://arxiv.org/abs/1811.03508

Python Reference:https://github.com/Chen-Cai-OSU/LDP

NetLSD (KDD 2018)

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alex Bronstein, and Emmanuel Müller

Paper:https://arxiv.org/abs/1805.10712

Python Reference:https://github.com/xgfs/NetLSD

A Simple Baseline Algorithm for Graph Classification (Relational Representation Learning, NIPS 2018)

Nathan de Lara and Edouard Pineau

Paper:https://arxiv.org/pdf/1810.09155.pdf

Python Reference:https://github.com/edouardpineau/A-simple-baseline-algorithm-for-graph-classification

Multi-Graph Multi-Label Learning Based on Entropy (Entropy NIPS 2018)

Zixuan Zhu and Yuhai Zhao

Paper:https://github.com/TonyZZX/MultiGraph_MultiLabel_Learning/blob/master/entropy-20-00245.pdf

Python Reference:https://github.com/TonyZZX/MultiGraph_MultiLabel_Learning

Hunt For The Unique, Stable, Sparse And Fast Feature Learning On Graphs (NIPS 2017)

Saurabh Verma and Zhi-Li Zhang

Paper:https://papers.nips.cc/paper/6614-hunt-for-the-unique-stable-sparse-and-fast-feature-learning-on-graphs.pdf

Python Reference:https://github.com/vermaMachineLearning/FGSD

Joint Structure Feature Exploration and Regularization for Multi-Task Graph Classification (TKDE 2015)

Shirui Pan, Jia Wu, Xingquan Zhuy, Chengqi Zhang, and Philip S. Yuz

Paper:https://ieeexplore.ieee.org/document/7302040

Java Reference:https://github.com/shiruipan/MTG

NetSimile: A Scalable Approach to Size-Independent Network Similarity (arXiv 2012)

Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos

Paper:https://arxiv.org/abs/1209.2684

Python:https://github.com/kristyspatel/Netsimile

图神经网络

Self-Attention Graph Pooling (ICML 2019)

Junhyun Lee, Inyeop Lee, Jaewoo Kang

Paper:https://arxiv.org/abs/1904.08082

Python Reference:https://github.com/inyeoplee77/SAGPool

Variational Recurrent Neural Networks for Graph Classification (ICLR 2019)

Edouard Pineau, Nathan de Lara

Paper:https://arxiv.org/abs/1902.02721

Python Reference:https://github.com/edouardpineau/Variational-Recurrent-Neural-Networks-for-Graph-Classification

Crystal Graph Neural Networks for Data Mining in Materials Science (Arxiv 2019)

Takenori Yamamoto

Paper:https://storage.googleapis.com/rimcs_cgnn/cgnn_matsci_May_27_2019.pdf

Python Reference:https://github.com/Tony-Y/cgnn

Explainability Techniques for Graph Convolutional Networks (ICML 2019)

Federico Baldassarre, Hossein Azizpour

Paper:https://128.84.21.199/pdf/1905.13686.pdf

Python Reference:https://github.com/gn-exp/gn-exp

Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019)

Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, and Junzhou Huang

Paper:https://arxiv.org/pdf/1904.05003.pdf

Python Reference:https://github.com/benedekrozemberczki/SEAL-CI

Capsule Graph Neural Network (ICLR 2019)

Zhang Xinyi and Lihui Chen

Paper:https://openreview.net/forum?id=Byl8BnRcYm

Python Reference:https://github.com/benedekrozemberczki/CapsGNN

How Powerful are Graph Neural Networks? (ICLR 2019)

Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka

Paper:https://arxiv.org/abs/1810.00826

Python Reference:https://github.com/weihua916/powerful-gnns

Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks (AAAI 2019)

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe

Paper:https://arxiv.org/pdf/1810.02244v2.pdf

Python Reference:https://github.com/k-gnn/k-gnn

Capsule Neural Networks for Graph Classification using Explicit Tensorial Graph Representations (Arxiv 2019)

Marcelo Daniel Gutierrez Mallea, Peter Meltzer, and Peter J Bentley

Paper:https://arxiv.org/pdf/1902.08399v1.pdf

Python Reference:https://github.com/BraintreeLtd/PatchyCapsules

Three-Dimensionally Embedded Graph Convolutional Network for Molecule Interpretation (Arxiv 2018)

Hyeoncheol Cho and Insung. S. Choi

Paper:https://arxiv.org/abs/1811.09794

Python Reference:https://github.com/blackmints/3DGCN

Learning Graph-Level Representations with Recurrent Neural Networks (Arxiv 2018)

Yu Jin and Joseph F. JaJa

Paper:https://arxiv.org/pdf/1805.07683v4.pdf

Python Reference:https://github.com/yuj-umd/graphRNN

Graph Capsule Convolutional Neural Networks (ICML 2018)

Saurabh Verma and Zhi-Li Zhang

Paper:https://arxiv.org/abs/1805.08090

Python Reference:https://github.com/vermaMachineLearning/Graph-Capsule-CNN-Networks

Graph Classification Using Structural Attention (KDD 2018)

John Boaz Lee, Ryan Rossi, and Xiangnan Kong

Paper:http://ryanrossi.com/pubs/KDD18-graph-attention-model.pdf

Python Pytorch Reference:https://github.com/benedekrozemberczki/GAM

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation (NIPS 2018)

Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec

Paper:https://arxiv.org/abs/1806.02473

Python Reference:https://github.com/bowenliu16/rl_graph_generation

Hierarchical Graph Representation Learning with Differentiable Pooling (NIPS 2018)

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton and Jure Leskovec

Paper:http://papers.nips.cc/paper/7729-hierarchical-graph-representation-learning-with-differentiable-pooling.pdf

Python Reference:https://github.com/rusty1s/pytorch_geometric

Contextual Graph Markov Model: A Deep and Generative Approach to Graph Processing (ICML 2018)

Davide Bacciu, Federico Errica, and Alessio Micheli

Paper:https://arxiv.org/pdf/1805.10636.pdf

Python Reference:https://github.com/diningphil/CGMM

MolGAN: An Implicit Generative Model for Small Molecular Graphs (ICML 2018)

Nicola De Cao and Thomas Kipf

Paper:https://arxiv.org/pdf/1805.11973.pdf

Python Reference:https://github.com/nicola-decao/MolGAN

Deeply Learning Molecular Structure-Property Relationships Using Graph Attention Neural Network (2018)

Seongok Ryu, Jaechang Lim, and Woo Youn Kim

Paper:https://arxiv.org/abs/1805.10988

Python Reference:https://github.com/SeongokRyu/Molecular-GAT

Compound-protein Interaction Prediction with End-to-end Learning of Neural Networks for Graphs and Sequences (Bioinformatics 2018)

Masashi Tsubaki, Kentaro Tomii, and Jun Sese

Paper:https://academic.oup.com/bioinformatics/article/35/2/309/5050020

Python Reference:https://github.com/masashitsubaki/CPI_prediction

Python Reference:https://github.com/masashitsubaki/GNN_molecules

Python Alternative:https://github.com/xnuohz/GCNDTI

Learning Graph Distances with Message Passing Neural Networks (ICPR 2018)

Pau Riba, Andreas Fischer, Josep Llados, and Alicia Fornes

Paper:https://ieeexplore.ieee.org/abstract/document/8545310

Python Reference:https://github.com/priba/siamese_ged

Edge Attention-based Multi-Relational Graph Convolutional Networks (2018)

Chao Shang, Qinqing Liu, Ko-Shin Chen, Jiangwen Sun, Jin Lu, Jinfeng Yi and Jinbo Bi

Paper:https://arxiv.org/abs/1802.04944v1

Python Reference:https://github.com/Luckick/EAGCN

Commonsense Knowledge Aware Conversation Generation with Graph Attention (IJCAI-ECAI 2018)

Hao Zhou, Tom Yang, Minlie Huang, Haizhou Zhao, Jingfang Xu and Xiaoyan Zhu

Paper:http://coai.cs.tsinghua.edu.cn/hml/media/files/2018_commonsense_ZhouHao_3_TYVQ7Iq.pdf

Python Reference:https://github.com/tuxchow/ccm

Residual Gated Graph ConvNets (ICLR 2018)

Xavier Bresson and Thomas Laurent

Paper:https://arxiv.org/pdf/1711.07553v2.pdf

Python Pytorch Reference:https://github.com/xbresson/spatial_graph_convnets

An End-to-End Deep Learning Architecture for Graph Classification (AAAI 2018)

Muhan Zhang, Zhicheng Cui, Marion Neumann and Yixin Chen

Paper:https://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf

Python Tensorflow Reference:https://github.com/muhanzhang/DGCNN

Python Pytorch Reference:https://github.com/muhanzhang/pytorch_DGCNN

MATLAB Reference:https://github.com/muhanzhang/DGCNN

Python Alternative:https://github.com/leftthomas/DGCNN

Python Alternative:https://github.com/hitlic/DGCNN-tensorflow

SGR: Self-Supervised Spectral Graph Representation Learning (KDD DLDay 2018)

Anton Tsitsulin, Davide Mottin, Panagiotis Karra, Alex Bronstein and Emmanueal Müller

Paper:https://arxiv.org/abs/1807.02839

Python Reference:http://mott.in/publications/others/sgr/

Deep Learning with Topological Signatures (NIPS 2017)

Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl

paper:https://arxiv.org/abs/1707.04041

Python Reference:https://github.com/c-hofer/nips2017

Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs (CVPR 2017)

Martin Simonovsky and Nikos Komodakis

paper:https://arxiv.org/pdf/1704.02901v3.pdf

Python Reference:https://github.com/mys007/ecc

Deriving Neural Architectures from Sequence and Graph Kernels (ICML 2017)

Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola

Paper:https://arxiv.org/abs/1705.09037

Python Reference:https://github.com/taolei87/icml17_knn

Protein Interface Prediction using Graph Convolutional Networks (NIPS 2017)

Alex Fout, Jonathon Byrd, Basir Shariat and Asa Ben-Hur

Paper:https://papers.nips.cc/paper/7231-protein-interface-prediction-using-graph-convolutional-networks

Python Reference:https://github.com/fouticus/pipgcn

Graph Classification with 2D Convolutional Neural Networks (2017)

Antoine J.-P. Tixier, Giannis Nikolentzos, Polykarpos Meladianos and Michalis Vazirgiannis

Paper:https://arxiv.org/abs/1708.02218

Python Reference:https://github.com/Tixierae/graph_2D_CNN

CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters (IEEE TSP 2017)

Ron Levie, Federico Monti, Xavier Bresson, Michael M. Bronstein

Paper:https://arxiv.org/pdf/1705.07664v2.pdf

Python Reference:https://github.com/fmonti/CayleyNet

Semi-supervised Learning of Hierarchical Representations of Molecules Using Neural Message Passing (2017)

Hai Nguyen, Shin-ichi Maeda, Kenta Oono

Paper:https://arxiv.org/pdf/1711.10168.pdf

Python Reference:https://github.com/pfnet-research/hierarchical-molecular-learning

Kernel Graph Convolutional Neural Networks (2017)

Giannis Nikolentzos, Polykarpos Meladianos, Antoine Jean-Pierre Tixier, Konstantinos Skianis, Michalis Vazirgiannis

Paper:https://arxiv.org/pdf/1710.10689.pdf

Python Reference:https://github.com/giannisnik/cnn-graph-classification

Deep Topology Classification: A New Approach For Massive Graph Classification (IEEE Big Data 2016)

Stephen Bonner, John Brennan, Georgios Theodoropoulos, Ibad Kureshi, Andrew Stephen McGough

Paper:https://ieeexplore.ieee.org/document/7840988/

Python Reference:https://github.com/sbonner0/DeepTopologyClassification

Learning Convolutional Neural Networks for Graphs (ICML 2016)

Mathias Niepert, Mohamed Ahmed, Konstantin Kutzkov

Paper:https://arxiv.org/abs/1605.05273

Python Reference:https://github.com/tvayer/PSCN

Gated Graph Sequence Neural Networks (ICLR 2016)

Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel

Paper:https://arxiv.org/abs/1511.05493

Python TensorFlow:https://github.com/bdqnghi/ggnn.tensorflow

Python PyTorch:https://github.com/JamesChuanggg/ggnn.pytorch

Python Reference:https://github.com/YunjaeChoi/ggnnmols

Convolutional Networks on Graphs for Learning Molecular Fingerprints (NIPS 2015)

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams

Paper:https://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf

Python Reference:https://github.com/fllinares/neural_fingerprints_tf

Python Reference:https://github.com/jacklin18/neural-fingerprint-in-GNN

Python Reference:https://github.com/HIPS/neural-fingerprint

Python Reference:https://github.com/debbiemarkslab/neural-fingerprint-theano

Graph Kernels

Message Passing Graph Kernels (2018)

Giannis Nikolentzos, Michalis Vazirgiannis

Paper:https://arxiv.org/pdf/1808.02510.pdf

Python Reference:https://github.com/giannisnik/message_passing_graph_kernels

Matching Node Embeddings for Graph Similarity (AAAI 2017)

Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis

Paper:https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14494

Global Weisfeiler-Lehman Graph Kernels (2017)

Christopher Morris, Kristian Kersting and Petra Mutzel

Paper:https://arxiv.org/pdf/1703.02379.pdf

C++ Reference:https://github.com/chrsmrrs/glocalwl

On Valid Optimal Assignment Kernels and Applications to Graph Classification (2016)

Nils Kriege, Pierre-Louis Giscard, Richard Wilson

Paper:https://arxiv.org/pdf/1606.01141.pdf

Java Reference:https://github.com/nlskrg/optimal_assignment_kernels

Efficient Comparison of Massive Graphs Through The Use Of ‘Graph Fingerprints’ (MLGWorkshop 2016)

Stephen Bonner, John Brennan, and A. Stephen McGough

Paper:http://dro.dur.ac.uk/19773/1/19773.pdf?DDD10+lzdh59+d700tmt

python Reference:https://github.com/sbonner0/GraphFingerprintComparison

The Multiscale Laplacian Graph Kernel (NIPS 2016)

Risi Kondor and Horace Pan

Paper:https://arxiv.org/abs/1603.06186

C++ Reference:https://github.com/horacepan/MLGkernel

Faster Kernels for Graphs with Continuous Attributes (ICDM 2016)

Christopher Morris, Nils M. Kriege, Kristian Kersting and Petra Mutzel

Paper:https://arxiv.org/abs/1610.00064

Python Reference:https://github.com/chrsmrrs/hashgraphkernel

Propagation Kernels: Efficient Graph Kernels From Propagated Information (Machine Learning 2016)

Neumann, Marion and Garnett, Roman and Bauckhage, Christian and Kersting, Kristian

Paper:https://link.springer.com/article/10.1007/s10994-015-5517-9

Matlab Reference:https://github.com/marionmari/propagation_kernels

Halting Random Walk Kernels (NIPS 2015)

Mahito Sugiyama and Karsten M. Borgward

Paper:https://pdfs.semanticscholar.org/79ba/8bcfbf9496834fdc22a1f7c96d26d776cd6c.pdf

C++ Reference:https://github.com/BorgwardtLab/graph-kernels

Scalable Kernels for Graphs with Continuous Attributes (NIPS 2013)

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne and Karsten Borgwardt

Paper:https://papers.nips.cc/paper/5155-scalable-kernels-for-graphs-with-continuous-attributes.pdf

Subgraph Matching Kernels for Attributed Graphs (ICML 2012)

Nils Kriege and Petra Mutzel

Paper:https://arxiv.org/abs/1206.6483

Python Reference:https://github.com/mockingbird2/GraphKernelBenchmark

Nested Subtree Hash Kernels for Large-Scale Graph Classification over Streams (ICDM 2012)

Bin Li, Xingquan Zhu, Lianhua Chi, Chengqi Zhang

Paper:https://ieeexplore.ieee.org/document/6413884/

Python Reference:https://github.com/benedekrozemberczki/NestedSubtreeHash

Weisfeiler-Lehman Graph Kernels (JMLR 2011)

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt

Paper:http://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf

Python Reference:https://github.com/jajupmochi/py-graph

Python Reference:https://github.com/deeplego/wl-graph-kernels

C++ Reference:https://github.com/BorgwardtLab/graph-kernels

Fast Neighborhood Subgraph Pairwise Distance Kernel (ICML 2010)

Fabrizio Costa and Kurt De Grave

Paper:https://icml.cc/Conferences/2010/papers/347.pdf

C++ Reference:https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/www.bioinf.uni-freiburg.de/~costa/EDeNcpp.tgz

Python Reference:https://github.com/fabriziocosta/EDeN

A Linear-time Graph Kernel (ICDM 2009)

Shohei Hido and Hisashi Kashima

Paper:https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5360243

Python Reference:https://github.com/hgascon/adagio

Weisfeiler-Lehman Subtree Kernels (NIPS 2009)

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt

Paper:http://papers.nips.cc/paper/3813-fast-subtree-kernels-on-graphs.pdf

Python Reference:https://github.com/jajupmochi/py-graph

Python Reference:https://github.com/deeplego/wl-graph-kernels

C++ Reference:https://github.com/BorgwardtLab/graph-kernels

Fast Computation of Graph Kernels (NIPS 2006)

S. V. N. Vishwanathan, Karsten M. Borgwardt, and Nicol N. Schraudolph

Paper:http://www.dbs.ifi.lmu.de/Publikationen/Papers/VisBorSch06.pdf

Python Reference:https://github.com/jajupmochi/py-graph

C++ Reference:https://github.com/BorgwardtLab/graph-kernels

Shortest-Path Kernels on Graphs (ICDM 2005)

Karsten M. Borgwardt and Hans-Peter Kriegel

Paper:https://www.ethz.ch/content/dam/ethz/special-interest/bsse/borgwardt-lab/documents/papers/BorKri05.pdf

C++ Reference:https://github.com/KitwareMedical/ITKTubeTK

Cyclic Pattern Kernels For Predictive Graph Mining (KDD 2004)

Tamás Horváth, Thomas Gärtner, and Stefan Wrobel

Paper:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.6158&rep=rep1&type=pdf

Python Reference:https://github.com/jajupmochi/py-graph

Extensions of Marginalized Graph Kernels (ICML 2004)

Pierre Mahe, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert

Paper:http://members.cbio.mines-paristech.fr/~jvert/publi/04icml/icmlMod.pdf

Python Reference:https://github.com/jajupmochi/py-graph

Marginalized Kernels Between Labeled Graphs (ICML 2003)

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi

Paper:https://pdfs.semanticscholar.org/2dfd/92c808487049ab4c9b45db77e9055b9da5a2.pdf

Python Reference:https://github.com/jajupmochi/py-graph

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4765

    浏览量

    100597
  • 互联网
    +关注

    关注

    54

    文章

    11117

    浏览量

    103064

原文标题:想要了解图或图神经网络?没有比看论文更好的方式了

文章出处:【微信号:tyutcsplab,微信公众号:智能感知与物联网技术研究所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    手持 / 便携多普勒流速流量计:无惧复杂环境的强大测流工具

    手持 / 便携多普勒流速流量仪是一种功能强大的测流工具,具有诸多特点和优势,使其能够在各种复杂环境中准确测量流体的流速和流量。
    的头像 发表于 11-22 09:35 62次阅读
    手持 / 便携多普勒流速流量计:无惧<b class='flag-5'>复杂</b>环境的<b class='flag-5'>强大</b>测流<b class='flag-5'>工具</b>

    【「从算法到电路—数字芯片算法的电路实现」阅读体验】+内容简介

    的Matlab建模和RTL设计,可帮助数字IC设计者掌握常用算法设计思路、工具和流程,从根本上提高设计基本算法电路和复杂算法电路的能力。本书共分为12章。第1~2章介绍算法和芯片设计的
    发表于 11-21 17:14

    FPGA基础知识及设计和执行FPGA应用所需的工具

    本文将首先介绍FPGA的基础知识,包括FPGA的工作原理以及为什么要使用FPGA等,然后讨论设计和执行FPGA应用所需的工具
    的头像 发表于 11-11 11:29 349次阅读
    FPGA基础<b class='flag-5'>知识</b>及设计和执行FPGA应用所需的<b class='flag-5'>工具</b>

    P2link——强大的内网穿透和远程访问工具

    P2Link作为一款强大的内网穿透和远程访问工具,可以帮助用户轻松实现网络连接和数据传输。特别适用于在复杂网络环境中需要远程访问内网资源的场景,如远程办公、设备管理和云服务等。
    的头像 发表于 11-01 14:21 252次阅读

    知识分享 | 轻松实现优质建模

    知识分享在知识分享栏目中,我们会定期与读者分享来自MES模赛思的基于模型的软件开发相关Know-How干货,关注公众号,随时掌握基于模型的软件设计的技术知识。轻松实现优质建模前言在基于
    的头像 发表于 09-12 08:08 350次阅读
    <b class='flag-5'>知识</b>分享 | 轻松实现优质<b class='flag-5'>建模</b>

    Python建模算法与应用

    Python作为一种功能强大、免费、开源面向对象的编程语言,在科学计算、数学建模、数据分析等领域展现出了卓越的性能。其简洁的语法、对动态输入的支持以及解释性语言的本质,使得Python在多个平台
    的头像 发表于 07-24 10:41 479次阅读

    神经网络在数学建模中的应用

    数学建模是一种利用数学方法和工具来描述和分析现实世界问题的过程。神经网络是一种模拟人脑神经元结构和功能的计算模型,可以用于解决各种复杂问题。在数学
    的头像 发表于 07-02 11:29 858次阅读

    常见的数据采集工具介绍

    数据采集是数据分析和处理的基础,它涉及到从各种数据源中提取、收集和整理数据的过程。数据采集工具的选择对于数据的质量和准确性至关重要。以下是对一些常见的数据采集工具介绍: 网络爬虫(W
    的头像 发表于 07-01 14:51 708次阅读

    Thermal-BST自动化工具在Flotherm建模中的应用与优势

    引言随着科技的不断发展,电子领域的需求也越来越广泛和多样化。然而,PCB板及其上的器件建模问题一直是电子工程师在设计过程中面临的重要挑战之一。软件中原有的PCB建模工具,转换出来的模型复杂
    的头像 发表于 05-28 08:35 270次阅读
    Thermal-BST自动化<b class='flag-5'>工具</b>在Flotherm<b class='flag-5'>建模</b>中的应用与优势

    原理工具Jupiter强大的连线功能

    利于电路设计和检查。很多专业的电路设计软件(原理Jupiter)都提供了强大的连线工具,以满足各种复杂电路的连线需求。连线功能主要具有哪些
    的头像 发表于 05-24 18:35 1036次阅读
    原理<b class='flag-5'>图</b><b class='flag-5'>工具</b>Jupiter<b class='flag-5'>强大</b>的连线功能

    虹科分享 | PCAN工具强大的CAN通讯解决方案,了解多少?

    在当今的汽车和工业自动化领域,可靠的通讯系统至关重要,虹科PCAN工具为这些应用提供了强大的支持。本文将介绍虹科PCAN工具的功能、应用和优势,帮助您根据实际需求选择合适的
    的头像 发表于 02-02 09:54 797次阅读
    虹科分享 | PCAN<b class='flag-5'>工具</b>:<b class='flag-5'>强大</b>的CAN通讯解决方案,<b class='flag-5'>你</b>了解多少?

    介绍三种建模方式

    据量大,而是指样本的完备性。还有就是大数据或者AI被专业学者或者行业工程师所诟病的就是,纯粹的数据驱动搞不出所以然出来,需要领域知识(即Domain Knowledge)的协助。此外,还有第三种建模方式就是混合驱动,即基础物理模
    的头像 发表于 01-23 10:48 1617次阅读

    虹科分享 | PCAN工具强大的CAN通讯解决方案,了解多少?

    导读: 在当今的汽车和工业自动化领域,可靠的通讯系统至关重要,PCAN工具为这些应用提供了强大的支持。本文将介绍PCAN工具的功能、应用和优势,以帮助您根据实际需求选择合适的
    的头像 发表于 01-15 10:23 1313次阅读
    虹科分享 | PCAN<b class='flag-5'>工具</b>:<b class='flag-5'>强大</b>的CAN通讯解决方案,<b class='flag-5'>你</b>了解多少?

    SaberRD状态机建模工具介绍(二)状态机建模工具使用示例

    假设电阻阻值为r_normal,首先打开状态机建模工具,添加电阻端口,电阻端口包含贯通变量电流和跨接变量电压,使用分支型端口。
    的头像 发表于 12-05 09:53 979次阅读
    SaberRD状态机<b class='flag-5'>建模</b><b class='flag-5'>工具</b><b class='flag-5'>介绍</b>(二)状态机<b class='flag-5'>建模</b><b class='flag-5'>工具</b>使用示例

    SaberRD状态机建模工具介绍(一)什么是状态机建模

    状态机建模是使用状态和方程式的手段,创建基于混合信号的有限状态机模型的一种建模工具
    的头像 发表于 12-05 09:51 1658次阅读
    SaberRD状态机<b class='flag-5'>建模</b><b class='flag-5'>工具</b><b class='flag-5'>介绍</b>(一)什么是状态机<b class='flag-5'>建模</b>