0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

小鼠听皮层神经元群体结构动态变化实现感觉到范畴的转化

mK5P_AItists 来源:YXQ 2019-07-22 15:13 次阅读

7月8日,《神经元》期刊在线发表了题为《小鼠听皮层神经元群体结构动态变化实现感觉到范畴的转化》的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心/神经科学研究所、上海脑科学与类脑研究中心、神经科学国家重点实验室徐宁龙研究组完成,博士研究生辛宇为该论文第一作者。

该研究通过在头部固定小鼠中建立一套听觉相关的抉择行为任务,同时使用双光子成像技术记录清醒小鼠的听觉皮层第2/3层群体神经元的反应,解析了对感觉信息进行范畴化(categorization)的皮层神经元群体运算机制。负责该项目的研究人员对皮层大量神经元活动进行记录和统计分析,发现在听觉皮层中存在范畴抉择相关的单细胞反应,并且,听觉皮层神经元的信息编码会根据任务需要发生动态变化。这种神经编码的动态变化在群体水平有利于把连续的感觉信息转化为任务相关的范畴信息。研究人员通过对群体神经元活动的解码,也验证了任务态下听皮层神经元活动能够准确预测小鼠执行听觉范畴分类任务的表现。

为什么需要对感觉信息进行分类或范畴化?这是由于人们大脑接收到的来自客观世界的感觉信息纷繁复杂,而人们能够形成的概念和采取的行动则数目有限,为了形成有意义的认知来指导行为,大脑需要对这些信息进行高效的组织管理,而其中最基本的过程就是范畴化(categorization),简单来讲,就是对外来刺激进行分类与定位,从而可以从外部信息中高效地抽提出最相关的信息,形成感知判断。例如,当接收到丰富多样的语音信息,大脑会把这些语音归类到属于不同的熟悉的人,或属于陌生人。当你接到一个电话时,即使因为环境干扰和电话通话噪声等因素而导致语音物理参数发生变化或扭曲,你仍然可以轻而易举识别出电话里的语音是否属于某一个熟人,或属于陌生人。这个过程就涉及到对声音信息的类别判断。另一个例子是关于人们对于色彩的认知。当看到彩虹时,尽管其中可见光的波长实际上是连续变化的,然而人们对于波长的物理数值难以形成感性认知或颜色概念,因此需要将连续的波长信息范畴化,将其定义为离散的七种颜色类别(红橙黄绿青蓝紫),便于信息存储与交流。这说明感觉信息范畴化可以帮助大脑高效存储信息和形成认知。因此,认知心理学研究认为,范畴化是人们对外界形成感知并且做出行动的一个普遍而基本的过程。

大脑如何将复杂而又连续的刺激信息范畴化呢?这里面的神经生物学机制是什么?对于这些问题的解答将使人们对脑认知功能的生物学基础和神经计算原理有更深入的理解。事实上,神经科学家早已意识到这个问题的重要性。美国麻省理工学院(MIT)的著名神经科学家Earl Miller的实验室早在2001年就在Science发表论文,提出猕猴前额叶可以产生视觉信息分类相关的神经活动。该论文的第一作者David Freedman后来(2006年)又在Nature发表论文,提出在后顶叶皮层也有编码视觉分类的神经活动。这些研究开启了信息分类和感知觉范畴化神经机制研究的新领域。但是这些研究中所发现的与感知类别相对应的神经活动,更多地代表神经运算的结果,而感觉信息怎样被转化为离散的类别信息的神经运算过程却并不清楚。

为了探索这个问题,脑智卓越中心的研究人员在小鼠中建立了一个基于听觉的分类抉择行为范式,经过训练,小鼠可以将不同频率的纯音归类到“高音”或“低音”范畴。同时研究人员结合活体双光子成像技术,在动物执行任务的同时对听觉皮层群体神经元活动进行大规模记录,并结合进一步的定量分析,从而研究了大脑皮层的神经元如何通过动态编码将感觉信息转化为类别信息的机制。研究的具体过程是,清醒小鼠在头部固定的情况下被放置在隔音箱内,经过训练它们可以将连续的单一频率声音(6种或者8种)按照设定的类别边界划分成两种类别:低频组或者是高频组,一般小鼠在经过一周的训练后可以达到80%以上的正确率(图A和图B)。随后,开始双光子成像的实验(图C)。对于这些小鼠,研究人员事先在听皮层神经元中利用微量病毒注射的方法表达钙指示剂GCaMP6s蛋白,并埋置长期成像窗口,从而实现对于群体神经元活动的长期稳定记录。

他们的研究发现,在单细胞水平,除了编码声音频率信息的神经元活动之外,在小鼠执行声音分类任务中,出现了两种与分类相关的神经活动。其中一类的神经元表现出对声音类别的特异性反应,类似于前人在前额叶和后顶叶等下游脑区发现的类别相关的神经元。例如图D中的神经元只对于低频类别声音有反应,而对于高频类别几乎没有反应。另外一类神经元则表现出对于类别边界频率声音的选择性反应(图E),而这种声音选择性反应在被动听声音的情况下并不存在,因此是一种任务依赖的动态调整。在群体神经元水平上,他们发现,相对于静息状态的被动刺激,任务态下听皮层对于相同声音的编码在群体构成上出现了动态调整(图F)。进一步通过对群体神经元活动的解码,发现这种动态调整使得听皮层神经元活动能够准确可靠地预测动物的行为任务(图G - H)。因此,该项工作揭示听觉皮层神经元群体可以根据分类任务的需要,动态调整信息编码特性,形成利于提高分类边界分辨能力的群体编码结构,从而提出了感知分类的一个新的神经运算机制。这一成果对于感觉皮层在认知过程中的信息处理机制提出了新的理解和预期,并且可能有助于启发人工智能算法设计的新思路。

该项工作在研究员徐宁龙的指导下,主要由辛宇完成,同时课题组的博士研究生钟林、张园,高级工程师潘璟玮,助理研究员周涛涛也做出了重要贡献。该工作得到国家基金委、国家重点实验室基金、中科院战略性先导科技专项、中科院重点前沿项目、青年千人计划等的资助。

图注:A、头部固定小鼠的行为范式。被动情况下小鼠只需要听声音,不需要做出反应。B、小鼠行为学的心理物理曲线。C、双光子成像示意图。D、对于声音的类别有选择性反应的示例神经元。E、对于类别的分界处的声音有特意选择性的示例神经元。F、使用群体神经元活动来预测单次实验中小鼠的行为,与小鼠实际的行为选择具有显著的相关性。G、群体神经元活动的解码结果跟小鼠的抉择行为显著相关。H、通过解析群体神经元活动得到的神经测量曲线跟小鼠行为学的心理物理曲线高度相似。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 麻省理工
    +关注

    关注

    0

    文章

    39

    浏览量

    12283
  • 神经元
    +关注

    关注

    1

    文章

    363

    浏览量

    18431

原文标题:研究揭示听觉皮层编码听觉认知的新机制

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    神经元芯片的主要特点和优势

    神经元芯片,又称神经芯片或神经元网络芯片,是一种专为实现网络通信和控制功能而设计的先进半导体芯片。这类芯片的设计灵感部分源自于对人脑神经元网络结构
    的头像 发表于 07-12 16:42 928次阅读

    神经元是什么?神经元神经系统中的作用

    神经元,又称神经细胞,是神经系统的基本结构和功能单位。它们负责接收、整合、传导和传递信息,从而参与和调控神经系统的各种活动。
    的头像 发表于 07-12 11:49 808次阅读
    <b class='flag-5'>神经元</b>是什么?<b class='flag-5'>神经元</b>在<b class='flag-5'>神经</b>系统中的作用

    人工神经元模型的基本构成要素

    ,它能够接收、处理和传递信息。在人工神经元模型中,神经元的基本结构包括输入、输出和激活函数。 1.1 输入 神经元的输入是一组数值,通常用向量表示。这些数值可以是特征值、像素值等,它们
    的头像 发表于 07-11 11:28 838次阅读

    人工神经元模型的基本原理是什么

    人工神经元模型是人工智能领域中的一个重要概念,它模仿了生物神经系统中的神经元行为,为机器学习和深度学习提供了基础。 一、人工神经元模型的历史 神经
    的头像 发表于 07-11 11:26 498次阅读

    人工神经元模型由哪两部分组成

    人工神经元模型是深度学习、机器学习和人工智能领域的基础,它模仿了生物神经元的工作原理,为构建复杂的神经网络提供了基础。 一、人工神经元模型的起源 生物
    的头像 发表于 07-11 11:24 625次阅读

    生物神经元模型包含哪些元素

    生物神经元模型是神经科学和人工智能领域中的一个重要研究方向,它旨在模拟生物神经元的工作原理,以实现对生物神经系统的理解和模拟。
    的头像 发表于 07-11 11:21 738次阅读

    人工智能神经元的基本结构

    人工智能神经元的基本结构是一个复杂而深入的话题,涉及计算机科学、数学、神经科学等多个领域的知识。 引言 人工智能(Artificial Intelligence,简称AI)是计算机科
    的头像 发表于 07-11 11:19 910次阅读

    人工神经元由哪些部分组成

    网络的基础。这些网络能够处理和分析大量数据,从而实现诸如图像识别、语音识别和自然语言处理等功能。 2. 神经元的生物学基础 在讨论人工神经元之前,了解生物神经元的工作原理是有益的。生物
    的头像 发表于 07-11 11:17 418次阅读

    人工神经元模型的基本原理及应用

    人工神经元模型是人工智能和机器学习领域的一个重要概念,它模仿了生物神经元的工作方式,为计算机提供了处理信息的能力。 一、人工神经元模型的基本原理 生物神经元
    的头像 发表于 07-11 11:15 538次阅读

    人工神经元模型的三要素是什么

    人工神经元模型是人工智能和机器学习领域中非常重要的概念之一。它模仿了生物神经元的工作方式,通过数学和算法来实现对数据的处理和学习。 一、人工神经元模型的基本概念 1.1 生物
    的头像 发表于 07-11 11:13 559次阅读

    神经元的分类包括哪些

    )是神经系统的基本功能单位,是一种高度分化的细胞,具有接收、传递和处理信息的能力。神经元通过电信号和化学信号进行信息传递和处理,是神经系统中最重要的细胞类型。 1.2 神经元
    的头像 发表于 07-03 11:36 909次阅读

    神经元结构及功能是什么

    神经元神经系统的基本结构和功能单位,它们通过电信号和化学信号进行信息传递和处理。神经元结构和功能非常复杂,涉及
    的头像 发表于 07-03 11:33 919次阅读

    神经元的基本作用是什么信息

    神经元神经系统的基本功能单位,它们在大脑、脊髓和周围神经系统中发挥着至关重要的作用。神经元的基本作用是接收、处理和传递信息。本文将详细介绍神经元
    的头像 发表于 07-03 11:29 710次阅读

    神经元的信息传递方式是什么

    神经元神经系统的基本单位,它们通过电信号和化学信号的方式进行信息传递。 神经元的信息传递方式 神经元结构和功能
    的头像 发表于 07-03 11:27 963次阅读

    神经元神经网络的区别与联系

    在人工智能和机器学习的领域中,神经元神经网络是两个至关重要的概念。虽然它们都与人脑中的神经系统有着密切的联系,但在实际应用和理论研究中,它们各自扮演着不同的角色。本文旨在深入探讨神经元
    的头像 发表于 07-01 11:50 750次阅读