0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI 的未来,就在我们的大脑里面吗?

汽车工程师 来源:YXQ 2019-07-22 17:25 次阅读

虽然自动驾驶还没有走向千家万户,但是自动驾驶芯片的大战早已开始。

这里面有 Mobileye 这样的行业先驱,有英伟达这样的跨界巨头,有特斯拉这样的别样车厂,还有地平线这样的国内新锐企业。

然而,我们也不应该忽略一些原本在芯片领域赫赫有名的面孔,比如英特尔——虽然早在 2017 年就收购了Mobileye,但这并不影响英特尔工程师们对自动驾驶的独特追求。

目前我们见到的自动驾驶芯片,本质上依然没有脱离一台计算机的基本结构,比如 CPU/GPU/DRAM 这些常见于你我桌上电脑、掌上手机的零件。而一台计算机在面对自动驾驶计算的时候,它的工作模式和人类司机的大脑相比是很不一样的。

举个例子吧,特斯拉新一代 Autopilot 硬件的功耗,官方描述是 250W 每英里,也就是说自动驾驶硬件在开启状态下会一直处于全速运行。但是人类司机并不会一直烧脑式驾驶,在自己熟稔的、交通状况良好的路段上,人类大脑的负担会明显更低。

所以,有没有办法让自动驾驶也能像人类一样,具有更高的能耗效率呢?

英特尔实验室给出了他们的答案:用造芯片的方法造一个大脑就好了。

将芯片造成大脑模样

上图这一坨东西叫做 Pohoiki Beach,主板里面密密麻麻的芯片叫做Loihi(跟我用粤语读一次,老嗨),来自于当地时间 15 号在底特律举行的2019 DARPA 电子复兴计划峰会。

注:DARPA,全称DefenseAdvanced Research Projects Agency,即美国国防高级研究计划局,是美国国防部属下的一个行政机构,负责研发用于军事用途的高新科技。成立于 1958 年的 DARPA,一开始主要是为了应对苏联 1957 年人造地球卫星成功发射而设立的部门。

一块 Pohoiki Beach 主板可以根据需求的不同搭载 8-32 块芯片,两块主板与左下角那个 Arria 10 FPGA 开发模块互联之后,Pohoiki Beach 最多可以成为一个拥有 64 个 Loihi 芯片的 AI 深度学习计算系统。

与这个世界上所有的硅芯片类似,Loihi 芯片的基本构成依然是晶体管。但是在 Loihi 里面,晶体管的工作形式并非传统的逻辑门架构,Loihi 的计算原理也并非传统计算机恪守数十年的冯诺依曼原理,而是以更接近人脑架构的神经元方式计算。

注:冯·诺依曼教授提出过现代电子计算机的三大原理,分别是1. 计算机由控制器、运算器、存储器、输入设备、输出设备五大部分组成;2.程序和数据以二进制代码形式不加区别地存放在存储器中,存放位置由地址确定;3. 控制器根据存放在存储器中地指令序列(程序)进行工作,并由一个程序计数器控制指令地执行。控制器具有判断能力,能根据计算结果选择不同的工作流程。

冯诺依曼架构虽然奠定了半个多世纪的电子计算机芯片基本框架,但这个架构也有其自身的瓶颈,那就是在处理器性能飞速发展的今天,缓存的读写速度出现了跟不上处理器运行速度的瓶颈——这个瓶颈就叫冯诺依曼瓶颈。

当然,我们无法真正的用硅元素「造」出一个神经元,Loihi 芯片的基本组成形式依然是晶体管,只是 Loihi 芯片内置晶体管的工作方式更接近于大脑神经元。64 个 Loihi 芯片一共包含了接近 1320 亿个硅晶体管,与之相比,英伟达 RTX 2080Ti GPU 内置晶体管数量为 186 亿个。

在 Pohoiki Beach 系统中,基于 14 纳米工艺打造的每块 Loihi 芯片可以模拟 13 万个硅神经元,以及 1.3 亿个硅神经突触。64 个 Loihi 芯片互联就是 830 万个神经元,已经相当于一个小老鼠大脑内所含有的神经元总量。

英特尔的目标远不止于此,今年年底即将推出的 Pohoiki Spring 系统会将 Loihi 芯片的性能发挥到极致,最多可以叠加 768 颗芯片,也就是模拟 1 亿个神经元,相当于一只未成年小猫的大脑神经元数量。

虽然 Pohoiki Beach 系统的神经元总量和人脑的 860 亿个神经元比起来还有很大的一段距离,但这并不妨碍它成为目前人类神经拟态计算的新里程碑。2015 年我国浙江大学研发的「达尔文」芯片是当时比较先进的神经拟态计算芯片,内置的硅神经元也才 2048 个。

在 2017 年 9 月份,Loihi 芯片刚发布的时候,英特尔专门为它打造了一个视频宣传片:

视频里面充斥着英特尔对 Loihi,乃至神经拟态芯片光辉未来的期望——可是为什么呢?

AI 的未来,就在我们的大脑里面吗?

先来说说神经元的工作原理

当人脑的神经元接收到信号的时候,神经元树突上的电位差会轻微升高,这个反应被称为神经元突触的激发。如果对该神经元的刺激达到一定阈值,就会产生动作电位(actional potential),产生动作电位的过程被称为放电(discharge)。

我们大脑产生和传递信息的原理,就隐藏在神经元之间的放电反应之中,比如放电的频率,放电的持久时间,放电反应中不同的电压等等。

与电子计算机芯片中使用的逻辑门不一样,大脑神经元只在接收到脉冲信号时才会产生动作电位并放射生物电脉冲。也就是说,大脑神经元的计算方式,在处理任务的时候会明显更高效。

最终的结果就是,大脑的功耗理论上会比同样运算能力的电子计算机低得多——实际上,作为人类文明的基石,人脑的「功耗」仅为 20W。

注:我们一开始认为 20W 这个结论是以讹传讹,然后我们在arXiv一篇探讨深度学习功耗的论文(arXiv 编号 1602.04019)的一处引用中找到了这个数字的根本出处——德国海德堡大学(1386 年创立,德国最古老的大学)Karlheinz Meier 教授的一项研究。

注:arXiv 是目前世界上最大的免费自然科学论文及其预印本阅读和交流平台,始创于 1991 年,目前由康奈尔大学管理。

如果不是铁证如山,相信很多人难以相信大脑的能耗如此之低——所以基于硅神经元打造的类人脑神经拟态芯片也能达到这样高的能耗比吗?

答案是可以的。

滑铁卢大学从事人工智能研究的教授 Chris Eliasmith 是 Loihi 芯片和 Pohoiki Beach 的首批合作使用者。根据 Chris 教授的实验室数据,同样实时运行一个深度学习模型并保持相同运算速度的情况下,Loihi 芯片的综合能耗水平仅为 GPU 的 109 分之一(相关研究成果在 arXiv 上可查论文,编号1812.01739),CPU 的 23.2 分之一。

注:滑铁卢大学位于加拿大安大略省西南部滑铁卢市,创建于 1957 年,计算机科学专业在 2017 年名列 USNEWS 世界大学排名第 18 位。

而当 Chris 教授将深度学习模型的规模扩大 50 倍之后,Poihiki Beach 在保持相同学习速度的基础上,功耗只增加了 30%,而能保持速度的传统智能芯片功耗增加了 5 倍。

考虑到上文提及的 64 核心 Poihiki Beach 系统一共内置了 1320 亿个晶体管,这样的功耗水平实在是低得恐怖。

也许这一章节硬核得有些过分,我们可以用非常生动形象的例子解释一下。

我们算 1+1 和算 76x89 的时候,思考的速度是差不多的,因为这两个算式的算法我们都知道(就像深度学习模型的训练)——但你算 100 道 1+1 级别的算术题,和你算 100 道 76x89 级别的算术题之后,你肚子饿的程度和你精神疲惫的程度,不会相差太远。

而神经元拟态计算,乃至几乎所有的神经网络计算,都是在特定的环境下运行的——这个环境叫矩阵运算。我们曾经在4个月之前的文章里面讨论过矩阵运算的基本原理,这里不详细展开,感兴趣的朋友可以在公众号后台回复「TPU」查看原文。

张量矩阵运算示意图

针对神经网络优化的芯片,绝大部分都是在矩阵运算方面有针对性优化的,所以其他神经网络芯片,比如谷歌的 TPU ,在深度学习方面都会比传统的CPU 和 GPU 能耗比更强——只是没有 Loihi 芯片这么出众而已。

而能耗比,恰好是车载智能硬件的一大硬伤。

举个例子,车载电子元件的工作温度要求一般在-40℃~55℃,更高的标准甚至会将上限设置在 110℃。也就是说,电子元件需要在极高的温度范围内保持正常的性能水平和质量水准,这就需要芯片厂商对每一代工艺做大量的优化和试验。

比如英伟达的 Drive PX 系列在改名为 AGX 系列的同时,也经受了 ASIL-D 级别标准的认定。黄仁勋在 GTC 大会上面的原话是「这个过程大概要一年多」。

为了适应车载级别的温度要求,功耗为 250W 的特斯拉 Autopilot 硬件 3.0 上面使用了复杂的水冷散热,功耗达到 500W 的英伟达 Drive AGX Pegasus 甚至根本没有车企敢用。

然而我们可以看一下在 Chris 教授论文里面,Loihi 芯片的功耗表现:

最大的差距体现在 Running,也就是运行中的功耗比较里,Loihi 以0.11W的功耗就可以达到英伟达 Quadro K4000 专业级 GPU 在37.83W功耗下同样的 AI 性能——0.11W 的功耗水平,意味着 Loihi 芯片根本不需要主动散热(就像我们的脑壳子也没有进化出一个风扇),省略了大量的结构成本。

可惜,目前 Loihi 芯片的成本和工艺依然是一个短板,14 纳米工艺下,英特尔需要极大量的芯片叠加才足以构建不到人脑万分之一的神经元矩阵。所以 Loihi 芯片现阶段的主要应用,还是在于智能义肢,或者是深度模型训练。

但这并不影响英特尔成为目前最接近「人造人脑」这一目标的公司

结语

1960 年,美国医学博士 Jack E.Steele 根据古希腊语和拉丁文里面「生命」共同的词根「bio」和表示性质的「nic」词根,创造出「bionic」,也就是仿生学(仿生学这一中文词汇来自于大陆 1963 年的翻译)。

但人类应用仿生学的历史早已有之。大禹治水时期,人们模仿鱼类在水中自由游动的特性,在船尾造木桨,这就是世界上最早的橹和舵。《韩非子》中记载的鲁班以竹木作鸟「成而飞之,三日不下」,这是世界上最早的人造飞行器记录。

人类的生产力在不断提高,野心也在不断提高,最终就是人越来越懒,什么都不希望自己干,甚至于思考本身,都希望找到代劳者。半个世纪以来的电子计算机,便是人类对终极仿生学追求的缩影——如果能造一个大脑就好了。

无论是你我手中的电脑,或者是 Model 3 里面装着的 Autopilot 硬件,它们都只是以科技的手段实现了大脑的「运算」能力,而并未真正发挥大脑的优势。

依照大脑结构依葫芦画瓢的英特尔新芯片,会是自动驾驶领域尚未升起的朝阳吗?由此延伸开去,它会是人类真正掌握「思考」这一命题的普罗米修斯吗?

只有时间能给我们解答。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    456

    文章

    50950

    浏览量

    424722
  • AI
    AI
    +关注

    关注

    87

    文章

    31133

    浏览量

    269454

原文标题:关注丨最像人脑的AI芯片来了,你的车子以后会有自己的想法?!

文章出处:【微信号:e700_org,微信公众号:汽车工程师】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    未来AI大模型的发展趋势

    未来AI大模型的发展趋势将呈现多元化和深入化的特点,以下是对其发展趋势的分析: 一、技术驱动与创新 算法与架构优化 : 随着Transformer架构的广泛应用,AI大模型在特征提取和并行计算效率
    的头像 发表于 10-23 15:06 663次阅读

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    农业、环保等,为人类社会的可持续发展做出贡献。 总结 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们展示了一个充满希望和机遇的未来。在这个
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    的重要作用和价值,同时也看到了其面临的挑战和未来发展方向。这次学习不仅丰富了我的知识储备,还激发了我对AI for Science未来发展的期待和热情。我相信,在不久的将来,AI fo
    发表于 10-14 09:16

    汇川技术推出Finovision凤麟AI云平台

    里的每一台机器不仅会“动”,更会“看”,还能“思考”。汇川AI视觉方案,正是这种科技魔法的缔造者,赋予机械“眼睛”和“大脑”,让智能制造不再是科幻,而是真实可触的未来
    的头像 发表于 10-14 09:03 879次阅读

    请回答OpenHarmony | 关于开源生态的未来想象,我们现场回答

    第三届OpenHarmony技术大会即将启幕 今年相聚,OpenHarmony又迎来了怎样的突破与发展? 在万物智联的时代,如何通过技术创新引领智能未来? OpenHarmony的开源力量如何推动
    发表于 10-12 00:09

    嵌入式系统的未来趋势有哪些?

    嵌入式系统是指将我们的操作系统和功能软件集成于计算机硬件系统之中,形成一个专用的计算机系统。那么嵌入式系统的未来趋势有哪些呢? 1. 人工智能与机器学习的整合 随着现代人工智能(AI)和机器学习
    发表于 09-12 15:42

    超星未来与埃夫特达成战略合作,携手打造具身智能「通用大脑

    具身智能是重要的边缘侧场景之一。埃夫特作为智能机器人链主企业,在技术、产品、生产、市场等各个方面都拥有深厚的积累。此次与埃夫特达成战略合作,是超星未来在“AI+X”商业路径上的又一里程碑。我们
    的头像 发表于 08-23 16:54 600次阅读
    超星<b class='flag-5'>未来</b>与埃夫特达成战略合作,携手打造具身智能「通用<b class='flag-5'>大脑</b>」

    比尔·盖茨展望AI未来:从AI顾问到深度智能体的演变

    在科技日新月异的今天,人工智能(AI)作为引领未来变革的关键力量,其发展前景始终牵动着全球科技界与公众的神经。近日,微软创始人比尔·盖茨在知名播客节目《Next Big Idea Club》上,就AI
    的头像 发表于 07-03 16:10 430次阅读

    Imagination 引领边缘计算和AI创新,拥抱AI未来发展

    ,致力于推动技术创新,拥抱人工智能的未来发展。同时他也介绍了Imagination在计算领域的战略布局、产品技术以及对未来AI发展的深刻洞察。Imagination
    的头像 发表于 06-28 08:28 553次阅读
    Imagination 引领边缘计算和<b class='flag-5'>AI</b>创新,拥抱<b class='flag-5'>AI</b><b class='flag-5'>未来</b>发展

    AI芯片未来会控制这个世界吗?

    AI芯片行业资讯
    芯广场
    发布于 :2024年03月27日 18:21:28

    脑机接口:探寻大脑活动新解码技术

    据最新研究,2月20日,英国知名学术期刊《自然》(Nature)特别报道了未来脑机接口的发展趋势及潜在影响力。研究强调,脑机接口不仅改变了我们看待大脑的视角,也刷新了我们
    的头像 发表于 02-25 15:50 790次阅读

    【国产FPGA+OMAPL138开发板体验】(原创)5.FPGA的AI加速源代码

    module ai_accelerator ( input wire clk,// 时钟信号,就像是我们大脑脉冲 input wire reset, // 复位信号,让我们
    发表于 02-12 16:18

    新火种AI|脑洞照进现实!马斯克正式官宣,已将芯片连入大脑...

    与电脑的直接连接更近了一步。 对于“大脑芯片植入”这一类的字眼,喜欢看科幻大片的小伙伴们应该都不陌生。诸如AI,机器人,脑接口技术等概念会时常出现在科幻电影里,很是炫酷。但如今,如此炫酷的科幻桥段却照进了现实,真真切切的发生在了我们
    的头像 发表于 02-01 14:38 407次阅读

    AI如何助力我们构建更智能的空间?利用AI构建智能空间的5种方式

    当下业界都聚焦于生成式 AI 如何推动未来变革,但我们也不妨回顾一下过去的一年,AI 如何助力我们构建更智能的空间。
    的头像 发表于 01-24 18:19 1096次阅读

    AI PC时代正在向我们走来

    AI无处不在,充满未知和期待的AI PC时代正在向我们走来,我们的生活和工作方式即将发生改变。
    的头像 发表于 01-19 09:49 634次阅读