555时基电路原理与应用
555时基电路是一种将模拟功能与逻辑功能巧妙结合在同一硅片上的组合集成电路。它设计新颖,构思奇巧,用途广泛,备受电子专业设计人员和电子爱好者的青睐,人们将其戏称为伟大的小IC。1972年,美国西格尼蒂克斯公司(Signetics)研制出Tmer NE555双极型时基电路,设计原意是用来取代体积大,定时精度差的热延迟继电器等机械式延迟器。但该器件投放市场后,人们发现这种电路的应用远远超出原设计的使用范围,用途之广几乎遍及电子应用的各个领域,需求量极大。美国各大公司相继仿制这种电路 1974年西格尼蒂克斯公司又在同一基片上将两个双极型555单元集成在一起,取名为NF556。1978年美国英特锡尔公司(Intelsil)研制成功CMOS型时基电路ICM555 1CM556,后来又推出将四个时基电路集成在一个芯片上的四时基电路558 由于采用CMOS型工艺和高度集成,使时基电路的应用从民用扩展到火箭、导弹,卫星,航天等高科技领域。在这期间,日本、西欧等各大公司和厂家也竞相仿制、生产。尽管世界各大半导体或器件公司、厂家都在生产各自型号的555/556时基电路,但其内部电路大同小异,且都具有相同的引出功能端。
555时基电路引脚图
等效功能电路
鉴于各种双极型的555集成块的内部电路大同小异,下面我们以CA555为例分析其内部电路和原理。从CA555时基电路的内部等效电路图中可看到,VTl-VT4、VT5、VT7组成上比较器Al,VT7的基极电位接在由三个5kΩ电阻组成的分压器的上端,电压为⅔VDD;VT9-VT13组成下比较器A2,VTl3的基极接分压器的下端,参考电位为⅓VDD。在电路设计时,要求组成分压器的三个5kΩ电阻的阻值严格相等,以便给出比较精确的两个参考电位⅓VDD和⅔VDD。VTl4-VTl7与一个4.7kΩ的正反馈电阻组合成一个双稳态触发电路。VTl8-VT21组成一个推挽式功率输出级,能输出约200mA的电流。VT8为复位放大级,VT6是一个能承受50mA以上电流的放电晶体三极管。双稳态触发电路的工作状态由比较器A1、A2的输出决定。
555时基电路的工作过程如下:当2脚,即比较器A2的反相输入端加进电位低于⅓VDD的触发信号时,则VT9、VTll导通,给双稳态触发器中的VTl4提供一偏流,使VTl4饱和导通,它的饱和压降Vces箝制VTl5的基极处于低电平,使VTl5截止,VTl7饱和,从而使VTl8截止,VTl9导通,VT20完全饱和导通,VT21截止。因此,输出端3脚输出高电平。此时,不管6端(阈值电压)为何种电平,由于双稳态触发器(VTl4-VTl7)中的4.7kΩ电阻的正反馈作用(VTl5的基极电流是通过该电阻提供的),3脚输出高电平状态一直保持到6脚出现高于⅓VDD的电平为止。当触发信号消失后,即比较器A2反相输入端2脚的电位高于⅓VDD,则VT9、VTll截止,VTl4因无偏流而截止,此时若6脚无触发输入,则VTl7的Vces饱和压降通过4.7kΩ电阻维持VTl3截止,使VTl7饱和稳态不变,故输出端3脚仍维持高电平。同时,VTl8的截止使VT6也截止。当触发信号加到6脚时,且电位高于⅔VDD时,则VTl、VT2、VT3皆导通。此时,若2脚无外加触发信号使VT9、VTl4截止,则VT3的集电极电流供给VTl5偏流,使该级饱和导通,导致VTl7截止,进而VTl8导通,VTl9、VT2。都截止,VT21饱和导通,故3脚输出低电平。当6脚的触发信号消失后,即该脚电位降至低于⅔VDD时,则VTl、VT2、VT3皆截止,使VTl5得不到偏流。此时,若2脚仍无触发信号,则VTl5通过4.7kΩ电阻得到偏流,使VTl5维持饱和导通,VTl7截止的稳态,使3脚输出端维持在低电平状态。同时,VTl8的导通,使放电级VT6饱和导通。通过上面两种状态的分析,可以发现:只要2脚的电位低于⅓VDD,即有触发信号加入时,必使输出端3脚为高电平;而当6脚的电位高于⅔VDD时,即有触发信号加进时,且同时2脚的电位高于⅓VDD时,才能使输出端3脚有低电平输出。4脚为复位端。当在该脚加有触发信号,即其电位低于导通的饱和压降0.3V时,VT8导通,其发射极电位低于lV,因有D3接入,VTl7为截止状态,VTl8、VT21饱和导通,输出端3脚为低电平。此时,不管2脚、6脚为何电位,均不能改变这种状态。因VT8的发射极通过D3及VTl7的发射极到地,故VT8的发射极电位任何情况下不会比1.4V电压高。因此,当复位端4脚电位高于1.4V时,VT8处于反偏状态而不起作用,也就是说,此时输出端3脚的电平只取决于2脚、6脚的电位。
根据上面的分析,CA555时基电路的内部等效电路可简化为如图所示的等效功能电路。显然,555电路(或者专556电路)内含两个比较器A1和A2、一个触发器、一个驱动器和一个放电晶体管。两个比较器分别被电阻R1、R2和R3构成的分压器设定的⅔VDD和⅓VDD。参考电压所限定。为进一步理解其电路功能,并灵活应用555集成块,下面简要说明其作用机理。从图1—5可见,三个5kΩ电阻组成的分压器,使内部的两个比较器构成一个电平触发器,上触发电平为⅔VDD,下触发电平为⅓VDD。在5脚控制端外接一个参考电源Vc,可以改变上、下触发电平值。比较器Al的输出同或非门l的输入端相接,比较器A2的输出端接到或非门2的输入端。由于由两个或非门组成的RS触发器必须用负极极性信号触发,因此,加到比较器Al同相端6脚的触发信号,只有当电位高于反相端5脚的电位时,R—S触发器才翻转;而加到比较器A2反相端2脚的触发信号,只有当电位低于A2同相端的电位⅓VDD时,R—S触发器才翻转。
通过上面对等效功能电路和CA555时基电路的内部等效电路的分析,可得出555各功能端的真值表。
引脚 2 6 4 3 7
电平 ≤⅓ VDD * 1.4V 高电平 悬空状态
电平 <⅓ VDD ≥⅔ VDD 1.4V 低电平 低电平
电平 <⅓ VDD >⅔ VDD 1.4V 保持电平 保持
电平 * * 0.3V 低电平 低电平
由表可看出,S、R、MR的输入不一定是逻辑电平,可以是模拟电平,因此,该集成电路兼有模拟和数字电路的特色。
“叮咚”门铃的制作:
555时基电路的分析和应用
1 555时基电路的特点
555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。
图1 555集成电路内部结构图
555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。
图2 555集成电路封装图
我们也可以把555电路等效成一个带放电开关的R-S触发器,如图3(A)所示,这个特殊的触发器有两个输入端:阈值端(TH)可看成是置零端R,要求高电平,触发端(TR)可看成是置位端S,要求低电平,有一个输出端Vo,Vo可等效成触发器的Q端,放电端(DIS)可看成是由内部放电开关控制的一个接点,由触发器的Q端控制:Q=1时DIS端接地,Q=0时DIS端悬空。另外还有复位端MR,控制电压端Vc,电源端VDD和
地端GND。这个特殊的触发器有两个特点:
(1)两个输入端的触发电平要求一高一低,置零端R即阈值端(TH)要求高电平,而置位端s即触发端(TR)则要求低电乎;
(2)两个输入端的触发电平使输出发生翻转的阈值电压值也不同,当V c端不接控制电压时,对TH(R)端来讲,>2/3VDD是高电平1,<2/3VDD是低电平0:而对TR(S)端来讲,>1/3VDD是高电平1,<1/3VDD是低电平0。如果在控制端(Vc)上控制电压Vc时,这时上触发电平就变成Vc值,下触发电平就变成1/2Vc值,可 见改变控制端的控制电压值就可以改变上下触发电平值。它的功能表见图3(B)所示。
图3 555电路等效R—S触发器
555集成电路有双极型和CMOS型两种。CMOS型的优点是功耗低、电源电压低、输入阻抗高,但输出功率较小,输出驱动电流只有几毫安。双极型的优点是输出功率大,驱动电流达200毫安,其他指标则不如CMOS型的。
555的应用电路很多,只要改变555集成电路的外部附加电路,就可以构成几百种应用电路,大体上可分为555单稳、555双稳及555无稳(即振荡器)三类。
2 555单稳电路
单稳电路有一个稳态和一个暂稳态,是利用电容的充放电形成暂稳态的,因此它的输入端都带有定时电阻和定时电容,常见的555单稳电路有两种:
1)人工启动型
将555电路的6、2脚并接起来接在RC定时电路上,在定时电容CT,两端接按钮开关SB,就成为人工启动型555单稳电路,如图4(a)所示,用等效触发器替代555,并略去与单稳工作无关的部分后见图4(b)所示,下面分析它的工作原理:
稳态:接上电源后,电容CT很快充电到VDD,从图4(b)看到,触发器输入R=1,S=1,从功能表看到输出Vo=0,这是它的稳态。
暂稳态:按下开关SB,CT上电荷很快放到零,相当于触发器输入R=0,S=0,输出立即翻转成Vo=l,暂稳态开始。开关放开后,电源又向CT充电,经过时间TD后,CT上电压上升到>2/3VDD时,输出又翻转成Vo=O,暂稳态结束。TD就是单稳电路的定时时间或延时时间,它和定时电阻RT和定时电容CT的值有关:TD=1.1RTCT。
图4人工启动型555单稳电路
2)脉冲启动型
将555电路的6、7脚并接起来接在定时电容CT上,用2脚作输入就成为脉冲启动型单稳电路,如图5(a)所示,电路的2脚平时接高电平,当输入接低电平或输入负脉冲时才启动电路,用等效触发器替代555后见图5 6)所示,下面分析它的工作原理:
稳态:接上电源后,R=1,S=1,输出Vo=0,DIS端接地,CT上的电压为0即R=0,输出仍保持Vo=0,这是它的稳态。
暂稳态:输入负脉冲后,输入S=0,输出立即翻转成Vo=1,DIS端开路,电源通过RT向CT充电,暂稳态开始。经过时间TD后,CT上电压上升到>2/3VDD时,输入又成为R=1,S=1,这时负脉冲已经消失,输出又翻转成Vo=0,暂稳态结束。这时内部放电开关接通,DIS端接地,CT上电荷很快放到零,为下一次定时控制作准备。电路的定时时间TD=1.1RTCT。
这两种单稳电路常用作定时延时控制。
图5脉冲启动型单稳电路
3 555双稳电路
常见的555双稳电路有两种:
1)R-S触发器型双稳
将555电路的6、2脚作为两个控制输入端,7端不用,就成为一个R-S触发器。注意两个输入端的触发电平和阈值电压不同,如图6(a)所示,有时可能只有一个控制端,这时另外一个控制端要设法接死,根据电路要求可以把R端接到电源端,如图6(b)所示,也可以把S接地,用R端作输入。
有两个输入端的双稳电路常用作电机调速、电源上下限告警等用途。有一个输入端的双稳电路作为单端比较器用于各种检测电路。
图6 555构成R-S触发器
2)施密特触发器型双稳
将555电路的6、2脚并接起来接成只有一个输入端的触发器,如图7(a)所示,这个触发器输出电压和输入电压的关系是一个长方形的回线形,如图7(b)所示,从曲线可知,当输入V1=0时输出Vo=1,当输入电压从0上升到>2/3VDD后,Vo翻转成0,当输入电压从最高值下降到<1/3VDD后,Vo又翻转成1。由于它的输入有两个不同的阈值电压,所以,这种电路常用于电子开关,各种控制电路、波形的变换和整形,如图8所示。
图7 555构成施密特触发器
图8波形的变换和整形
4 555无稳电路(振荡器)
由555定时器构成的多谐振荡器如图9(a)所示,其工作波形见图9(b)。
接通电源后,电源VDD通过R1和R2对电容C充电,当Uc<1/3VDD时,振荡器输出Vo=1,放电管截止。当Uc充电到≥2/3VDD后,振荡器输出Vo翻转成0,此时放电管导通,使放电端(DIS)接地,电容C通过R2对地放电,使Uc下降。当Uc下降到≤1/3VDD后,振荡器输出Vo又翻转成1,此时放电管又截止,使放电端(DIS)不接地,电源VDD通过R1和R2又对电容C充电,又使Uc从1/3VDD上升到2/3VDD,触发器又发生翻转,如此周而复始,从而在输出端Vo得到连续变化的振荡脉冲波形。脉冲宽度TL≈0.7R2C,由电容C放电时间决定;TH=0.7(R1+R2)C,由电容C充电时间决定,脉冲周期T≈TH+TL。
图9 555构成多谐振荡器
上面仅讨论了由555定时器构成的几种典型应用实例。实际上,由于555定时器灵敏度高,功能灵活,因而在电子电路中获得广泛应用。
评论
查看更多