在气体流量测量的基础上,给定值和实际测得的瞬时流量进行比较后算出偏差,然后对气体流量进行调节。由于气体流量系统的精确数学模型很难获得,而模糊控制算法具有人的智能思维、适应性好、鲁棒性强等特点,正适用于这类系统。因此,采用模糊控制算法对气体流量进行自动控制,可取得良好的控制特性,其模糊控制器框图如图5所示。
模糊控制器采用双输入、单输出的二维结构。输入变量为瞬时流量偏差e和偏差变化c,输出变量为控制量u。其模糊子集分别为
E={NL, NM, NS, NO, PO, PS, PM, PL}
C={NL, NM, NS, O, PS, PM, PL}
U={NL, NM, NS, O, PS, PM, PL}
它们的论域分别为
E={-6,-5,-4,-3,-2,-1,-0, +0, 1, 2, 3, 4, 5, 6}
C={-6,-5,-4,-3,-2,-1, 0, 1, 2, 3, 4, 5, 6}
U={-7,-6,-5,-4,-3,-2,-1, 0, 1, 2, 3, 4, 5, 6, 7}
当瞬时流量变化时,通过驱动调节阀,控制其开启的大小及变化规律,使偏差趋近于零。根据气体流量的参数特点和现场实际操作经验及专家的知识理论,总结出模糊控制规则表,如表1所示。
选择模糊控制规则是模糊控制器的关键问题。为了更好地提高控制精度,本系统采用带有4个调整因子的控制规则:
其中,0<α1<α2<α3<α4<1,本系统选择:α1=0.26,α2=0.58,α3=0.76,α4=0.86。代入上式运算后经反复修改和实际调试,得到了实用的模糊控制查询表,如表2所示。
系统的软件设计及抗干扰措施
软件的设计包括系统下位机和上位机的设计。
1 下位机程序设计
下位机程序主要进行C8051F020单片机系统的初始化、端口配置、A/D初始化、液晶以及键盘扫描初始化。为防止误动作,无意中改变系统的有关参数,造成人为计量误差,系统可设置“密码”,保证测量的可靠性和准确性,具体流程如图6所示。
模糊控制中的控制算法由程序实现。包括两部分,一是离线计算模糊控制查询表,二是在实时控制过程中在线输入变量,并将它们作模糊量化处理,然后查找模糊控制查询表后进行输出,去控制调节阀的开启角度,来实现对气体流量的控制。
2 上位机部分
上位机程序采用Lab Windows/CVI设计,主要实现对采样气体流量、两个流量限值的接收和显示,还可对流量限值进行修改和发送给下位机。
3 抗干扰措施
为提高控制系统的稳定性,加强抗干扰能力,可采用隔离电源变压器,信号通道采用光电隔离和滤波技术;可使用Watchdog技术和软件陷阱防止程序跑飞,实现任务的恢复;采取电源抗干扰措施。
评论
查看更多