此子系统设计展示了基于IC 的过压保护、过流保护、反向电流保护、反极性保护和漏线保护的实施情况,与保险丝、PTC 和二极管相比,该设计更加准确快速且功耗更低。与现场供电相连接的可编程逻辑控制器 (PLC) I/O 模块受益于对 24V 现场输入连接器的保护,因为电源故障或漏线可能会损害或导致模块无法正常运行。
随着无线通信、信息传感技术的迅猛发展和日渐成熟, 通过信息传感微控制器和网络将物品联接成物联网, 以实现物品的自动识别、定位、跟踪、继电器和管理为目标的服务已成为可能。现代汽车中的空调一般是利用手工进行控制的,空调只有等到司机进入驾驶室才能开启或关闭,这就使得在炎热的夏天或寒冷的冬天, 刚进入车内时由于空调没有开启,人会感觉到异常的燥热或寒冷,因此设计和制造出能监控车内温度并根据监测到的温度情况来进行提前远程控制开启车内空调系统的设备便提到人们日常生活的议事日程上来,本设计就是为满足这一要求而提出来的。
温度采集模块
系统中的温度采集模块采用DALLAS 公司生产的高精度、高可靠性的DS18B20 温度传感器, 它具有体积小、硬件开销低、抗干扰能力强、精度高的特点, 采用单总线数据通信, 全数字温度转换及输出, 最高12 位分辨率,精度可达±0.5℃, 检测温度范围为-55℃~+125℃, 因此它能满足本系统的设计要求。DS18B20 与微控制器的连接电路见图2 所示。
图2 STC89C52RC 微控制器模块和DS18B20 的连接电路图
继电器开关控制模块
继电器开关模块由TLP521 -4 、ULN2803 和SRD -12VDC 及三极管构成, 由微控制器输出的信号经过三极管构成的开关电路送往TLP521 -4 光耦芯片再通过ULN2803 达林顿管的放大后用来驱动SRD-12DC 继电器, 进而达到控制空调的各种开关的作用, 继电器开关控制模块与微控制器的电路连接图如图3 所示。
图3 继电器控制模块电路图
----------------------------------------
TOP2 UC3907外部电路连接电路
TC35I 模块是Simens 推出的一款双频900/1800 MHz高度集成的GSM 模块。它设计小巧、功耗很低, 可以为很多通信应用提供经济高效的解决方案。它支持EGS900 和GSM1800 双频, 数据传输的内容支持语音、数据、短消息和传真服务, 通信接口采用RS232( 指令和数据的双向传送),供电电源采用单电源3.3 V~5.5 V 的电压, 适用的范围包括: 便携电脑的低功耗通信设备、遥测遥感、远程信息处理和通信等工业领域。本系统中TC35I 与微控制器的电路连接图如图4 所示。
图4 TC35I 模块电路连接图
系统电源模块采用了LM78L05 和LM2941S 两控制器将外部12 V 的直流供电电压转换为系统所需要的5 V和4.2 V 的电压, DS18B20连接电路图如图5 所示。
图5 电源连接电路图
本文就是从物联网的角度出发提出一种以GSM 无线网络为基础, 通过温度传感器, 将用户手机、汽车空调组合成一个小型物联网的应用设计。专为基础的设备汽车空调温度控制系统设计方法, 经实际的制作和调试验证, 该系统能够稳定、可靠地运行, 该系统还具有扩展方便、无线传输距离远,可广泛应用于远距离控制领域。
UC3907外部电路连接电路设计图
图1所示为UC3907(点划线框)与外部电路的连接方式。电流信号由外部分流器弘采样,RCS一般串联在功率输出的返回支路,通过2脚或3脚引入电流放大器,电源模块的输出电压采用信号由11脚和4脚差动输入,与环流信号叠加,然后再与基准电压比较,生成电压误差信号Ue;Ue经过驱动放大器输出,再通过外接光耦与电源模块的PWM控制器相连接。15脚接均流母线。
图1 UC3907与外部电路连接的原理框图
TOP3 微压力传感连接器电路
微压力传感器信号是控制器的前端,它在测试或控制系统中处于首位,对微压力传感器获取的信号能否进行准确地提取、处理是衡量一个系统可靠性的关键因素。后续接口电路主要指信号调节和转换电路,即能把传感元件输出的电信号转换为便于显示、记录、处理和控制的有用电信号的电路。由于用集成电路工艺制造出的压力传感器往往存在:零点输出和零点温漂,灵敏度温漂,输出信号非线性,输出信号幅值低或不标准化等问题。
电桥放大电路
由于所测出的微压力传感器两端的电压信号较弱,所以电压在进行A/D 转换之前必须经过放大电路的放大(见图2)。INA118 由3 个运算放大器组成差分放大结构,内置输入过压保护,且可通过外置不同大小的电阻实现不同的增益(从1 到1 000),因而应用范围很广。
图2 电桥放大电路
通过在脚1 和脚8 之间外接一电阻Rg 来实现不同的增益,该增益可从1 到1 000 不等。电阻Rg 为式中G 为增益。由于Rg 的稳定性和温度漂移对增益有影响,因此,在需要获得高精度增益的应用中对Rg 的要求也比较高,应采用高精度、低噪声的金属膜电阻。此外,高增益的电路设计中的Rg 值较小,如G=100时的Rg 值为1.02 kΩ;G=1 000 时的Rg 值为50.5Ω。
AD7715 接口电路
为了实现对微压力的实时测量,使用 16 位的AD7715 对输出电压进行采样测量,其中AD780 提供2.5V 高精度基准电压。P3.1 脚提供了AD 工作所需的时钟,P1.4 和P1.5 脚接收和发送通讯数据,P1.6 是片选信号,P1.7 接DRDY ,AT89S52 可以通过查询P1.7 的状态来判断是否可以读取AD 转换结果。A/D 接口电路如图3所示。
图3 A/D 转换电路
单片机接口电路
AT89S52 是一个低功耗,高性能CMOS 8 位单片机,兼容标准MCS-51 指令系统及80C51 引脚结构。本设计使用的复位电路是由22μF 的电容,1 kΩ的电阻及IN4148 二极管组成。在满足单片机可靠复位的前提下,该复位电路的优点在于降低复位引脚的对地阻抗,可以显着增强单片机复位电路的抗干扰能力。二极管可以实现快速释放电容电量的功能,满足短时间复位的要求。本设计的单片机连接电路如图4 所示,输入信号为经7715A/D 转换的模拟电压,单片机进行计算处理后输入到LCD1602 液晶显示,显示出相应的压力值。
图4 单片机连接电路
通过对微压力传感器的应用、特点及工作特性等方面的研究,并对微压力传感器接口电路进行了设计,在电路框图中充实了各个部分的内容。首先采用惠斯通电桥滤出微压力传感器输出的变量,然后用INA118放大器将此信号放大,再用7715A/D 转换器驱动LCD 将其显示。完善了微压力传感器接口电路,使电路在功能性、稳定性、可靠性及小型化等方面都有所增强。
TOP4 低通滤波连接器电路设计
信号调理电路是数据采集器中不可缺少的一部分。随着数据采集技术不断发展,对信号调理电路的要求也越来越高,其电路设计的优化程度直接关系到数据采集器的精度和稳定性。而滤波电路则是信号调理模块的关键所在。普通有源滤波器是由运算放大器和电阻、电容组成,但参数调整困难,而且应用于频率较高的场合,元件周围的分布电容将严重影响滤波器的特性,使其偏离预定的工作状态。普通有源滤波器还因为稳定性较差,较难实现窄带宽的设计,不易获得高Q值,难以满足系统要求。本文设计的传感器信号调理电路采用LTC1569型通用滤波器,能够高精度滤波调理传感器输出信号,从而满足数据采集器高精度和高稳定性的要求,与普通的有源滤波器相比。LTCl569组成的滤波器具有外接元件少,结构简单,参数调整方便和稳定性较好等优点。
LTC1569的工作模式
LTC1569需要依靠一个时钟来驱动电路,可采用外部时钟或者内部时钟两种方式。当使用外部时钟时只需将引脚6(Rx)与引脚4(V-)短接。当采用内部时钟时,需外接一只电阻REXT,其电路接法如图1所示,电阻值与截止频率,fCUTOFF的关系是:
当DIV/CLK引脚短接到V-引脚时。内部分频设置为1:1:当DIV/CLK引脚通过一只100 pF的电容接V-引脚时,内部分频设置为1:4;当DIV/CLK引脚短接到V+引脚时,内部分频设置为1:16。
低通滤波电路
本设计要求截止频率为2 kHz,根据外接电阻和截止频率的关系得到外接电阻REXT=40 kΩ,将DIV/CLK引脚短接到V+引脚。滤波电路连接如图2所示。
该电路采用单电源供电模式,因此V+引脚接+5 V电源,C11为电源滤波电容,以确保输入电压质量。R9和R12为分压电阻。通过分压得到GND引脚的参考电压为2 V。IN+引脚为信号输入引脚,OUT引脚为电路输出引脚,通过该滤波电路即可输出性能良好的波形。R10设置滤波器的截止频率,本设计要求截止频率为2 kHz,经计算得到R10=40 kΩ,实验中测量了不同频率下LTC1569的输入和输出幅值,如表1所示。
由表1可以看出,当输入频率f=100 Hz、f截止=200 Hz时输出信号开始衰减,当f=f截止=2 kHz时,输出信号的幅值为输入信号的0.707倍,符合低通滤波电路的幅频特性,保证了滤波电路的截止频率为2 kHz。
另外,信号经LTC1569输出后需加入电压跟随器。因为滤波器的输出阻抗比较高,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中,这就需电压跟随器进行缓冲,降低输出阻抗。LTC1569低通滤波器可广泛应用于精度要求较高的系统中,与传统有源滤波器相比,LTC1569 实现抗混叠滤波器具有巨大的优势,由于它可通过一只外接电阻来设置截止频率,使用起来非常方便灵活。由此可见,LTC1569在信号调理电路中具有广泛的应用前景。
TOP5 低功耗485连接器电路
ADM2483是内部集成了磁隔离通道和485收发器的芯片,内部集成的磁隔离通道原理与光耦不同,在输入输出端分别有编码解码电路和施密特整形电路,确保了输出波形的质量。且磁隔离功耗仅为光耦的1/10,传输延时为ns级,从直流到高速信号的传输都具有超越光耦的性能优势。内部集成的低功耗485收发器,信号传输速率可达500Kbps,后端总线可支持挂载256个节点。具有真失效保护、电源监控以及热关断功能。
要实现隔离RS-485接口的电路设计只需在ADM2483的电源与地之间接一个104的去耦电容即可。当然,DC-DC隔离电源是必不可少的。其电路连接如下图:
信号自收发电路
信号自收发电路我们采用74HC14芯片,利用它的施密特波形翻转性能来控制RE、DE引脚,以实现信号的自收发。其电路连接如下图:
如图所示,MCU的发送信号经过施密特触发器反向后输给DE和RE脚,发送数据引脚TxD接地。
当有高电平信号发送时,经反向变为低电平信号,DE/RE引脚输入为低电平,使发送驱动器禁止,总线为高阻状态,此时由A、B总线上的上拉电阻产生高电平输出。当有低电平信号发送时,经反向变为高电平信号,DE/RE引脚输入为高电平,使发送驱动器工作,由于TxD引脚端接地,为低电平,这样就将低电平发送至总线。
仅为实现RS-485接口的自收发功能,在实际应用中,应根据使用情况作出相应的修改。此收发电路也有不足之处,当在连续发送高电平时,ADM2483的DE/RE引脚处于接收状态,所以,此时的发送端和接收端都处于接收状态,这时的总线是空闲状态,是允许各节点发送数据的,因此一般在主从式的网络结构中采用此方法。在网络上也有不同的几种实现RS-485收发器自收发的方案,分别有以下几种:
利用三极管反向原理实现
电路如下图:
当不发送数据时,TxD信号为高电平,经V1反向后使ADM2483处于接收状态。当发送数据时,TxD为高时,经V1反向,使发送驱动器禁止,总线为高阻状态,此时由A、B总线上的上拉电阻产生高电平输出。TxD为低时,经V1反向,使发送驱动器工作,由于TxD引脚端接地,为低电平,这样就将低电平发送至总线。
TOP6 RS485收发器自收发电路
采用这种电路时,需要程序保证不同时进行接收和发送的操作。
利用555定时器,其原理于以上电路类似,电路图如下:
555定时器为边沿触发,当TxD发送高电平时,555定时器OUT引脚输出低电平,当TxD发送低电平时,555定时器OUT引脚输出高电平,当TxD转为高电平时,OUT引脚输出的高电平状态会延迟一会再转入低电平,以确保发送数据的正确性。
采用74HC14和RC电路实现,此电路是对单纯使用74HC14实现自收发电路的改进,增加了RC充放电电路,减少总线处于空闲状态的时间,电路如下图:
当TxD信号为高电平,则通过电阻为电容充电,其充电时间为T,该时间应设置为串口发送一个字节所需要的时间,由R,C参数来确定。当电容充满后,则 DE/RE为低电平,使ADM2483处于接收状态。在发送数据时,TxD起始位产生第一个下降沿,使电容经过二极管进行快速放电,使DE/RE很快变为高电平,ADM2483处于发送状态。在发送过程中, 当TxD变成高电平时,电容通过电阻缓慢充电,使DE/RE仍然保持在发送状态,可有效吸收总线上的反射信号。当RC充电结束,使DE/RE转入接受状态时, 总线上的上拉、下拉电阻将维持TxD高电平的发送状态,直至整个bit发送结束。
当数据发送完毕以后,TxD变为高电平,RC又开始充电,即经T时间后,ADM2483又转换为接收状态。以上所有电路均为参考电路,为电路设计者提供思路,在实际使用中请再次验证,以确保电路的稳定及不会对系统造成破坏。对于电路损坏造成的损失,概不负责。
TRF7970A用于13.56MHz RFID/近场通信系统的集成模拟前端和数据组帧器件。内置编程选项使得此器件适合于广泛的相邻或者附近识别系统的应用。它能够执行以下三种模式中的任一模式:RFID/NFC 读取器、NFC 对等点、或者卡仿真模式。内置用户可配置编程选项使得此器件适合于范围宽广的应用。通过在控制寄存器中选择所需的协议可对TRF7970A。到所有控制寄存器的直接存取可根据需要对不同的读取器参数进行微调。
应用电路图解
一个并行或者串行接口(SPI) 可被用于MCU 和TRF7970A读取器间的通信。当使用内置的硬件编码器和解码器的时候,发射和接收功能使用一个128 字节FIFO 寄存器。对于直接发射或者接收功能,由于编码器或者解码器可被旁路绕开,所以MCU 可实时的处理数据。对于MCU I/O 接口,TRF7970A支持从1.8V 至5.5V 的数据通信电平。当使用一个5V 电源时,发射器有一个等同于50Ω 负载的100 mW (+20 dBm) 或者200 mW (+23 dBm) 的可选输出功率水平。发射器支持具有可选调制深度的通断键控(OOK) 和幅移键控(ASK) 调制。TRF7970A还有一个数据传输引擎,此引擎包含针对ISO15693,ISO14443A/B 和FeliCa 的低阶编码。发送数据编码包括自动生成的帧开始(SOF)、帧结束(EOF)、循环冗余校验(CRC)、和奇偶校验位。几个集成的电压稳压器确保了对于完整读取器系统适当的电源噪声抑制。内置的可编程辅助电压稳压器VDD_X(引脚32)为微控制器和读取器系统内的附加外部电路提供高达20mA 的电源。
图4-1显示了最灵活的TRF7970A应用电路原理图。ISO15693,ISO14443 和FeliCa 系统都可被设定址。由于DATA_CLK 线路上的低时钟频率,并行接口是将TRF7970A连接至MCU 的最稳健耐用的方法图4-1显示了匹配至一个50Ω 端口,这样可实现到一个适当匹配的50Ω 天线电路或者RF 测量设备的连接(例如,一个频谱分析仪或者一个功率计)。
电路原理图
图4-1显示了一个并行MCU 接口的示例应用电路原理图。
图4-1. 应用电路原理图- 并行MCU 接口
一个MSP430F2370(32kB 闪存,2k BRAM)显示在图4-1中。最小MCU 需求取决于应用要求和编码风格。如果只需支持一个ISO 协议或者一个协议的有限命令集,则对于MCU 闪存和RAM 的要求将会大大减少。请注意递归目录和防冲突命令比单槽运行要求更多的RAM。例如,ISO15693(含主机接口)目前的基准固件大约为8kB,使用 512B RAM;对于所有支持的协议(具有同样的主机接口),此基准固件接近12kB 并且最少使用1kB 的RAM。为了实现直接模式0 运行需要一个GPIO 运行频率能达到13.56MHz 的MCU。
图4-2显示了针对使用串行端口接口(SPI) 的ISO15693 和ISO14443 系统而进行了优化的TRF7970A应用电路原理图。较短的SPI 线路,无线电设备频率线路的正确隔离,和一个恰当的接地区域对于避免干扰十分重要。DATA_CLK 线路上的推荐时钟频率为2MHz。图4-2显示了匹配至一个50Ω 端口,这样可实现到一个适当匹配的50Ω 天线电路或者RF 测量设备的连接(例如,一个频谱分析仪或者一个功率计)。
电路原理图
图4-2显示了一个具有SS 模式MCU 接口的SPI 的示例应用电路原理图。
图4-2. 应用电路原理图- 具有SS 模式MCU 接口的SPI
一个MSP430F2370(32kB 闪存,2kB RAM)图4-2。最小MCU 需求取决于应用要求和编码风格。如果只需支持一个ISO 协议或者一个协议的有限命令集,则对于MCU 闪存和RAM 的要求将会大大减少。用户应该注意递归目录/防冲突命令比单槽运行要求更多的RAM。例如,ISO15693(含主机接口)目前的基准固件大约为8kB,使用512B RAM;对于所有支持的协议(具有同样的主机接口),此基准固件接近12kB并最少使用1kB 的RAM。为了实现直接模式0 运行需要一个GPIO 运行频率能达到13.56MHz 的MCU。
TOP7 无线病房呼叫系统连接器电路
在传统的呼叫系统基础上,以80C51系列单片机为核心,设计了一种基于单片机的无线病房呼叫器。介绍了电路设计及软件实现方法,并给出了系统框图、硬件电路及部分程序设计。该呼叫系统使用了专用的高集成度射频无线收发芯片进行传输,不仅避免了传统的有线寻呼系统布线复杂和改建麻烦的问题,而且使整个系统电路简洁、性能稳定。
分机nRF401与AT89C2051主连接电路的设计
nRF401有休眠(Standby)、接收(RX)和发射(1x)3种工作状态。由nRF401 的引脚功能可知,这3种状态问的切换由PWR-UP、TXEN的状态可以确定。DIN、Dout是串行通信El,分别与单片机的串行通信口相连。CS脚则选择工作频率。nRF401与单片机的连接电路如图4所示。在分机上有1个信息确认灯,在信息发送成功后确认灯闪亮1s,可以由单片机的I/O口直接点亮。限流电阻选用100Ω,工作电流即可以满足要求。
图4收发模块与单片机连接电路
nRF401与AT89C2051连接电路的设计
主机工作时也要进行状态切换、频率选择和串行通信,实现的方法与分机的一样,所以连接电路和分机的也一样,这里给出nRF401的连接图,如图5所示。
图5 nRF401的连接
显示电路的设计
P1.5,P1.6和P1.7端口分别控制数码管的个位、十位和百位的供电,当相应的端口变成低电平时,相应的三极管会导通,+5V的电源通过驱动三极管给数码管相应的位供电,这时只要锁存器口送出数字的显示代码,数码管就能正常显示数字。因为要显示几位不同的数字,所以必须用动态扫描的方法来实现。该系统的显示部分采用LED共阳极接法,采用动态显示。首先将显示的个十百位分别存放,然后逐个取出进行显示。为了防止闪烁,每位LED显示160 us.为了防止重影,当一位显示完毕后立刻将其关闭,然后进行下一位的显示。LED显示电路如图6所示。
图6 LED显示电路
键盘电路设计
主机上的键盘总共需要2个,即翻查键和删2软件设计除键,连接图见图7。
图7主机键盘电路
报警电路的设计
主机在接受到呼叫信号后,首先进行报警告知值班人员。报警电路可以用单片机P2.0输出1 kHz和500 Hz的音频信号经放大后驱动扬声器,发出报警信号,报警发声电路见图8。
图8主机报警发声电路
本呼叫器的硬件设计电路结构十分简洁,成本低廉,能实现医院呼叫所需的一般功能,但不能完全排除遇到主机忙而导致呼叫失败的情况。一但由于分机上有一个确认灯,遇到呼叫失败的情况,呼叫后确认灯不会闪亮,则需要用户再次呼叫一次。该硬件和软件设计方案已通过实验检验,各项参数稳定,功耗低,系统运行稳定,通信误码率低,具有很好的开发应用前景。
TOP8 电话网络报警系统连接器电路
系统主要由接收报警信息预处理电路与PC机组成(如图 1)。报警信息接收预处理电路通过接收电话网络传来的报警信息,并将报警信息格式化,再通过USB接口将信息传送给PC机。PC机接收传送回来的格式化信息,进行信息分析和差错处理,确认格式正确后再与数据库(ADO)中的用户数据进行比对,将报警用户的信息通过报警对话框弹出显示。
图3 HT9032的电路连接图
电话线上的直流和交流电压都高于报警主机的电压,需要在接口处加光耦,将程控交换机和报警器的电源隔离。要避免户外断线或户外非法并机,并且报警器没有摘机的情况下才报警。出现异常,光耦导通,集电极输出低电平给单片机,进行异常报警中断处理。用PNP的三极管控制继电器常开端的吸合和打开。当单片机发出摘机信号时,给三极管的基极低电平,三极管导通,继电器闭合,电话线两端的电阻降至300 nΩ左右,从而实现模拟摘机。当单片机发出挂机信号时,给三极管的基极高电平,三极管截止,继电器常开端打开,电阻上升至无穷,从而实现模拟挂机。
音频编码连接器应用电路设计攻略
DSP处理器通过DAI接口和AD1835A芯片相连。音频芯片的内部配置寄存器是通过处理器的SPI口来完成的。DPI4引脚被用来做为设备的片选,DAI引脚可以被配置成以时分复用(TDM)模式或者2线接口模式(TWI)从AD1835A传输串行数据。此外,我们只设计用到一路DAC4音频输出。如图1所示。
图1 AD1835A和DSP的连接电路图
AD1835A时钟电路
AD1835A的主输入时钟(MCLK)可以由板上12.288Mhz的晶振产生,或者由DSP处理器上的DAI引脚提供,并通过开关SW3的1,2引脚位置配置。用DAI引脚产生晶振,允许多重器件同步,例如当数据来自索尼飞利浦数字接口(S/PDIF)接收器的时候,可以通过音频芯片输出。此时,S /PDIF的MCLK来自于AD1835A的MCLK。
开关的第三个位置决定了主从模式的选择。当开关的3和6相连时,即开关闭合的状态,MASTER_SLAVE为低,主模式,AD1835的串行接口来提供帧同步和时钟信号;3和6断开时,即开关关闭的状态,MASTER_SLAVE为高,从模式,DSP处理器需要提供帧同步和时钟信号,默认开关为闭合状态。
图2 AD1835A时钟电路图
TOP9 ADC输入电路设计
ADC输入电路部分,主要采用AD8606搭建成T型滤波电路,前端电路是音频信号输入,后端是经过处理的平衡输出音频信号,AD8606是双路轨到轨输入和输出、单电源放大器,具有极低失调电压、低输入电压和电流噪声以及宽信号带宽等特性。由于AD8606是单电源,因此要提供参考电压 AUDIO_VREF_ADC使两端平衡输出ADCLN和ADCLP都以参考电压为中心,我们使用RCA接口ADCL和ADCR被用来输入模拟信号,左声道ADC输入电路如图3所示,右声道电路和此部分电路相近。
图3 ADC输入电路图
DAC输出电路
考虑到DAC音频输出包括线路输出和耳机输出,并且国际上有个标准,要求线路输出阻抗最好是一定的数值,以便和功放、有源音箱、耳放的输入阻抗相配,因为这样的声音失真最小并且音质最好,而耳机的阻抗一般是几十或几百欧姆,耳机所需要的电流、电压也比功放、有源音箱、耳放所需要的大,因为需要足够的电压和电流把它推动起来,就需要输出设备有较小的输出阻抗,较大的输出电压、电流和它配合。所以需要两个接口,两个不同的电路,使输出满足各自不同要求的电路指标。DAC线路输出采用AD8606搭建成低通平滑滤波电路,同样的,由于AD8606是单电源,因此要提供参考电压AUDIO_VREF_DAC使两端平衡输出ADCLN和ADCLP都以参考电压为中心,DAC左声道输出电路如图4所示,右声道输出电路和此类似,详见附录。输出通道和RCA接口 DACL 和DACR相连。
图4 DAC输出电路图
耳机输出电路通过AD8532搭建成同相跟随器电路,AD8532是单电源低功耗双路轨到轨输入和输出放大器,输出电流为250mA,如图5所示。音频芯片的通道4和耳机接口DACHEAD相连。
图5 DAC耳机输出电路图
根据编码方式的不同,音频编码技术分为三种:波形编码、参数编码和混合编码。一般来说,波形编码的话音质量高,但编码速率也很高;参数编码的编码速率很低,产生的合成语音的音质不高;混合编码使用参数编码技术和波形编码技术,编码速率和音质介于它们之间。
触摸屏连接器应用电路设计方案
TSC2007 的引脚和 TSC2003 的引脚完全兼容,可以插入和 TSC2003 相适应的插座中,因此,可以很方便地替换原来使用的 TSC2003 以进行更新升级。 TSC2007 采用 CMOS 工艺制作,具有 TSSOP16 和 WCSP12 两种引脚封装形式,其工作温度范围为 -40 ~ + 85 ℃ 。由于在触摸屏被点击之后,一般都需要确定所点击点的 X 、 Y 坐标参数,以备系统处理并发送相应的消息。为此,设计时就需要对 TSC2007 进行读写操作。TSC2007 的写操作时序如图所示。当 SCL 为高电平时, SDA 由高电平向低电平跳变,系统开始传送数据。数据的前五位为固定的 10010 ,后两位为地址,可表示四个从设备,第八位为 0 。
TSC2007 的读操作时序图如所示。读操作时,首先由 MCU 发送一个开始信息,然后传送 8bit 地址信息,该信息与写操作时传送的前 7 个 bit 位一样,只是第 8 个 bit 为 1( 表示 read) 。此后,经 TSC2007 确认后, MCU 便可接受 8bit 或 12bit 数据,也就是 TSC2007 发送的 x 值或者 y 值。
TSC2007 的硬件连接电路
基于 TSC2007 的触摸屏接口电路连接图如图 4 所示。其中, 10 脚 (PENIRQ) 、 11 脚 (SDA) 、 12 脚 (SCL) 分别与 MCU 的 3 个 GPIO 口 ( 通用输入输出脚 ) 进行通信。通过程序模拟在 SCL 脚上产生方波,就可在 SDA 脚上进行数据的传输,并在 PENIRQ 脚上传输中断信号。在实际应用的基础上,本文介绍了利用触摸屏控制器 TSC2007 实现触摸屏功能的设计方案。通过这款功能强大,操作简便的触摸屏控制器,能精确快速地在诸如手机、 Mp3 、 ATM 机等设备上实现便携式电子产品及其他多媒体设备的触摸屏功能。可以预见,随着触摸屏技术的迅速发展,触摸屏对于计算机技术的普及利用将发挥重要作用。
在实际应用的基础上,本文介绍了利用触摸屏控制器 TSC2007 实现触摸屏功能的设计方案。通过这款功能强大,操作简便的触摸屏控制器,能精确快速地在诸如手机、 Mp3 、 ATM 机等设备上实现便携式电子产品及其他多媒体设备的触摸屏功能。可以预见,随着触摸屏技术的迅速发展,触摸屏对于计算机技术的普及利用将发挥重要作用。
TOP10 LTC6802与MCU的连接器电路
随着环境和能源问题日益严峻,电动汽车及混合动力汽车已经成为了当今世界关注的焦点。蓄电池是EV的动力环节,但其单体端电压及容量都较小,比如广泛应用的磷酸铁锂(LiFePO4)电池端电压一般不超过3.65 V,因此常需多单体串并联组合使用来满足车辆的需求。对于车载电池包而言,一个功能完备的监控系统是非常必要的。目前国内的电池组监控设备存在两大问题:一是电池电压检测精度不高,二是电池组均衡控制的实现较复杂。针对这些问题,本文应用Linear Technology 公司新推出的电池组监控芯片LTC6802,设计了一套面向锂离子电池组的硬件监控平台。该平台设计实现的功能包括单体电压/ 温度检测、电池组均衡以及分布式CAN 通信等。
LTC6802 与MCU 的连接电路设计
LTC6802 的外围电路及其与微控制器之间的连接电路如图2 所示。本电路中MCU 选取的是Freescale 系列单片机MC9S08DZ60,其主要功能是进行电流和温度采集、接收来自LTC6802 的信息并将电池包组态信息发送到分布式CAN 通信网络中。
图2 LTC6802 与MCU 的连接电路
LTC6802 可通过其自身与SPI 兼容的串行接口实现与MCU 的通信。对于LTC6802 而言,CSBI 为片选信号;SDO 为串行数据输出;SDI 为串行数据输入;SCKI 为串行时钟输入。此外,为了保证通信过程稳定可靠,本设计中还引入了静电干扰抑制电路,见图2 中的D7-D15.该电路由8 个二极管和一个齐纳二极管组成,实际也可以采用专用的ESD 静电保护器件PRTR5V0U4D 来实现。MCU 的另一项任务是将电池包组态信息发送到CAN 通信网络中。在此本设计选取了CAN 隔离驱动芯片ISO1050,见图2 中的U1.为了进一步提高CAN 通信的抗干扰性能,在平台的CAN 输出端还采用了瞬态电压抑制芯片PSM712。
温度采集电路设计
电池包节点温度也是组态信息中的重要参数。在本平台中,节点温度的检测由MCU 实现,设计每个单体取一个节点,共计可实现对12 个节点的温度检测。温度采集电路如图4 所示,图中给出了节点1 的连接电路。首先,设计中选取热敏电阻RT103 作为温度传感原件,将温度信号转换为电压信号;接着,电压信号输入模拟开关器件CD4067D,可通过MCU 配置其ABCD 四个控制端对输入信号进行选通,并由其公共端即管脚1 输出;最后,模拟开关输出的信号经RC 滤波及限幅处理后输入到MCU 的AD 输入端,节点温度采集得以实现。
图3 电压采集及均衡电路
图4 温度采集电路
基于电池监控芯片LTC6802 以及微控制器MC9S08DZ60,设计了一套面向LTC6802与MCU的连接器电路监控平台。结合芯片特点及平台应用场合,分别对电压检测电路、均衡控制电路、温度采集电路、SPI 通信及CAN 通信电路进行了具体的设计。该平台充分利用了LTC6802 集成度高、电压采集精度高以及抗干扰能力强的特点,很大程度上改善了传统的电池监控电路存在的电压采集精度差和电路结构复杂的问题。可以断言, 在EV/HEV 产业中,这种基于LTC6802 的电池组监控平台具有很强的应用价值和良好的应用前景时,Q1 将导通对其放电,放出的电能会消耗在电阻R1 上。
TOP11 剖析LPC2119USB-CAN连接器电路
目前在以计算机为上位机的应用领域,都首选USB口作为计算机与外设的接口。由于CAN总线具有可靠性高、功能完善、成本合理、实时性等优点,被广泛应用于各个自动化控制系统中,CAN总线是国际上应用最广泛的现场总线之一。为了更好的将USB的通用性和CAN的专业性结合起来,通过计算机的 USB接口接入CAN专业网络,实现系统控制的便利性和应用的高效性。本文讲述了一种基于ARM7处理器实现USB接口与CAN总线的实例,通过其可以在 PC实现对CAN总线上设备的监控。
处理器简介及其外围电路
LPC2119是基于一个支持实时仿真和跟踪的16/32位ARM7TDMI- STM CPU,并带有128 KB嵌入的高速FLASH存储器。128位宽度的存储器接口和独特的加速结构使32位代码能够在最大时钟速率下运行。对代码规模有严格控制的应用可使用 16位Thumb模式将代码规模降低超过30%,而性能的损失却很小。实行流水线作业,提供Embedded ICE逻辑,支持片上断点和调试点,具有先进的软件开发和调试环境。LPC2119具有非常小的64脚封装、极低的功耗、多个32位定时器、4路10位 ADC、2路CAN、PWM通道、多个串行接口,包括2个16C550工业标准UART、高速I2C接口和2个SPI接口,46个GPIO以及多达9个外部中断,特别适用于汽车、工业控制应用以及医疗系统和容错维护总线。
图1 LPC2119外围电路
LPC2119内部集成2个CAN控制器,每一个CAN控制器都与独立CAN控制器SJA1000有着相似的寄存器结构。它的主要特性有:单个总线上的数据传输速率高达1 Mb/s;32位寄存器和RAM访问;兼容CAN2.0B,ISO11898-1规范;全局验收滤波器可以识别所有的11位和29位标识符;验收滤波器为选择的标准标识符提供Full CAN-style自动接收。图1所示为LPC2119外围电路,为保证可靠复位,采用外部复位电路STM809。
USB接口电路设计
USB接口采用沁恒电子的CH375。CH375是一个USB总线的通用接口芯片,支持USB-HOST主机方式和USB- DEVICE/SLAVE设备方式。在本地端,CH375具有8位数据总线和读、写、片选控制线以及中断输出,可以方便地挂接到单片机/DSP/MCU/MPU等控制器的系统总线上。CH375提供了串行通信方式,通过串行输入、串行输出和中断输出与单片机/DSP/MCU/MPU等相连接。图2所示为CH375的接口电路。
图2 USB接口电路
CAN总线接口电路设计
CAN总线收发器采用82C250,并选用6N137作隔离,LPC2119的TD和RD引脚不是直接与82C250的TX、RX引脚相连,而是通过高速光耦6N137与82C250相连,这样可增强CAN总线节点的抗干扰能力,从而实现总线各节点间电气隔离。高速光耦6N137用于保护 LPC2119内部CAN总线控制器,该光耦两侧采用5 V的DC-DC电源,可使器件的VCC与VCC1完全隔离,提高系统的抗干扰能力以及节点的稳定性和安全性。图3所示为LPC2 119与CAN驱动器82C250的连接电路。DC-DC电源模块采用B0505LS-2W,电路在图4中所示。
图3 CAN驱动器82C250的连接电路
图4 DC-DC隔离电路
本系统设计采用内置CAN控制器的LPC2119作为主控制器,CH375作为USB接口芯片,实现USBCAN转换器,论述了LPC2119的外围电路、CAN总线驱动电路以及LPC2119与CH375之间的接口连接,并在软件给出LPC2119使用通用I/O模拟并口读写时序的方法,对 LPC2119,CH375及CAN总线的实际应用具有一定的参考价值。
TOP12 解读HT9032C新型显示器连接器电路
本设计通过对原有的普通来电器加以改进,增加了液晶显示模块和语音报号芯片。在单数据消息格式下,该来电显示器不仅可以显示主叫号码、呼叫日期、时间,而且可以显示主叫用户的姓名,使被叫用户轻松地知道来电者的身份,方便用户选择接听。该来电显示器对有350个以下电话号码的用户最为实用,可以大大提高工作效率,具有很高的实用价值。
FSK信号解调部分
FSK解码芯片HT9032C。HT9032C是接收物理层主叫识别信息的低功耗CMOS集成芯片。它满足Bell 202和CCITT V.23 1200 b/sFSK数据传输标准,同时能检测振铃和载波。电话线经过接口电路接到HT9032C的TIP、RING、RDETl和RDET2引脚。当有振铃信号到来时,HT9032C的脚触发下降沿。在第1次和第2次振铃之间,HT9032C把逻辑“1”=(1200±12)Hz、“O”=(2 200±22)Hz,传输速率为1200 b/s的FSK信号解调成串行异步二进制数据。当检测到有效载波信号时,触发下降沿。在DOUTC脚只输出主叫识别信号;而在DOUT脚输出包括信道占用信号(由一组300个连续的O和1交替组成,第1位为0,最后1位为1,在通话状态下信道占用信号不发送),标志信号(由180个《挂机状态下》或80个《通话状态下》标志位《逻辑1》组成,即持续的高电平),以及主叫识别信号的所有信号。各脚的时序波形如图2 所示。在VSS=0 V,VDD=5 V,晶振为3.58 MHz,工作温度Ta=0-70℃时,测得tDOSC=2ms,tSUPD≥15 ms,tDAQ=14ms,tDCH≥8 ms。
HT9032C 与AT89S52的硬件连接电路如图3所示。HT9032C的引脚接AT89S52的外部中断1,当有振铃信号时,脚触发外部中断1。HT9032C的引脚接AT89S52的外部中断O,当检测到有效解调后的主叫识别信号时,脚触发外部中断0。HT9032C的DOUTC引脚接AT89S52的串行接地引脚。当检测到振铃和有效载波信号时,便打开串口中断,接收解调的FSK信号,得到来电信息。
HT9032C 解调出的FSK基带信号送入AT89S52的捕获中断,信号的传送速率为1200 b/s,所以AT89S52设定波特率为1200 b/s,利用串口对信号进行采集,由此得到O、1比特流。将其按10位合成字节信息,每个字节起始位是1,结束位为O,中间8位为信息。最后根据主叫识别的单数据消息格式提取所需的消息字,得到来电日期与来电号码。
----------------------------------------
评论
查看更多