光电二极管工作时采用零偏置(光伏)模式或反向偏置(光导)模式。光伏模式可获得最精确的线性运算,而让二极管工作在光导模式可实现更高的开关速度,但代价是降低线性度。在反向偏置条件下,存在少量的电流(称为暗电流),它们甚至在没有光照度的情况下也会流动。可在运算放大器的同相输入端使用第二个同类光电二极管消除暗电流误差,如图4所示。
图4. 具有暗电流补偿功能的光电二极管前置放大器系统(原理示意图:未显示所有连接和去耦)
本电路还适合其它应用,如模拟光隔离器。它还能满足需要更高带宽和更低分辨率的应用,如自适应速度控制系统。
本电路笔记讨论图4中所示电路的优化设计步骤,以满足特定带宽应用的要求,这些步骤包括:稳定性计算、噪声分析和器件选择考虑因素。
光电二极管属于高阻抗传感器,用于检测光的强度。它没有内部增益,但相比其它光检测器,可在更高的光级度下工作。
有三个因素影响光电二极管的响应时间:
处于光电二极管耗尽区域内载波的充电采集时间
处于光电二极管未耗尽区域内载波的充电采集时间
二极管电路组合的RC时间常数
由于结电容取决于光电二极管的扩散区以及施加的反向偏置,采用扩散区较小的光电 二极管并施加较大的反向偏置即可获得更快的上升时间。在 CN-0272电路笔记中,采用 SFH 2701 PIN光电二极管,其结电容典型值为3 pF,0 V偏置下的最大值为5 pF.1 V反向偏置时的典型电容为2 pF,5 V 反向偏置时为1.7 pF.本电路的测量均在5 V反向偏置下进行。
图5 光电二极管电路的噪声电路分析
该软件环境提供了光电二极管的 LabVIEW跨导模型,允许根据设计示例中使用的具体光电二极管进行定制(图 5a)。必须先运行仿真,再构建任何板卡。由于噪声增益路径(图 5b)中引入了零点,所以可能会出现不稳定。MultiSim 仿真说明了噪声增益路径中引入零点造成的不 稳定(图 5b)。改变反馈电阻上的电容会影响可用的带宽(图 5c)。
如上文所述,必须在反馈电阻上放置 2 pF 电容来引入一个极点,从而取消此零点。 2 pF 反馈电容是理论值。 可以分析不同值对设计电路可用带宽的影响(图 5c)。还可以通过监控输出来校验电路带宽,其−3 dB 带宽为 1 kHz。
编辑点评:本文介绍分析了光电二极管的原理及信号调理电路图,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。
电子发烧友《无线通信特刊》,更多优质内容,马上下载阅览
评论
查看更多