2.2DC-DC变换电路
DC-DC变换电路如图4所示。采用推挽式电路,高频变压器初级绕组中心抽头接蓄电池12V,线圈两端接开关管MOS1和MOS2,触发信号由TL494提供,间隔180°。MOS1导通时,MOS2截止,蓄电池12V电压加在初级绕组W12和MOS1构成的回路上,绕组W12上感应出的电压与蓄电池电源电压相等,同名端为正极性,次级绕组W2感应电压上正下负。MOS2导通时,MOS1截止,蓄电池12V电压加在初级绕组W11和MOS2构成的回路上,绕组W11同名端为负极性,次级绕组W2感应电压上负下正。这样,次级绕组W2上得到了脉宽180°的交变方波电压,再经快恢复二极管D7~D10全波整流后得到22V直流电压。
TL494的工作开关频率由第6脚的电阻和第5脚的电容共同决定。较高的开关频率可以减小高频变压器体积,降低成本,但太高的开关频率会增加功率开关管的损耗,对散热要求较高,开关频率太低使得变压器体积必须增大,导致整体成本增加。考虑到本逆变器有小型风扇散热,为了减小体积,使之便于携带,本电路设定开关频率为50kHz,从而使高频变压器可以做得很小。
2.3高频变压器绕组设计
(1)初级绕组匝数
设推挽电路的初级绕组匝数W11=W12=W1,由法拉第定律有:V1=KfFW1BMAe(1)
式中:V1为输入电压;F为开关频率;Kf为波形系数,方波为4.0,正弦波为4.4;BM为最大磁通密度;Ae为磁芯截面积。
由式(1)可得:W1=VI/(KfFBMAe)。
(2)次级绕组匝数
W2=(V2/V1)W1(2)
其中,V2为次级绕组电压,这里为22V直流电压和快恢复二极管压降之和。
图4DC-DC变换电路
(3)绕组导线计算
导线截面积为S1=I1/J1,I1为各绕组电流有效值;J1为电流密度,一般为3~5A/MM2。导线直径为D1=槡4S1/π。
铜导体穿透深度:
式中:ρ为铜导体电阻率,25℃时ρ=1.72×10-8Ω·M;R为铜导体电导率;μ0为真空磁导率;F为工作频率。
选取导线时,应使线径小于2δ,并采用直径小于2δ的多股导线并绕,或采用宽而薄的铜导线绕制,铜箔厚度小于[4]2δ。
2.4DC-AC变换电路
DC-AC变换电路如图5所示。采用全桥逆变形式,由于不需要变压器升高或降低电压而是直接向负载供电,使得逆变器的体积可以减小。MOS4和MOS5为一组,MOS3和MOS6为一组,两组功率管轮流导通。选择脉宽调制(PWM)控制方式,具体塬理为:MOS5和MOS6轮流导通180°,MOS3和MOS4也是同样的方式。
图5DC-AC变换电路
下桥臂MOS4和MOS6的触发信号要比上桥臂MOS4和MOS5早,这样有利于上桥臂功率管的触发。
评论
查看更多