(1)脉冲响应不变法。
按照技术要求设计一个模拟低通滤波器,得到模拟低通滤波器的传输函数转换成数字低通滤波器的系统函数H(z)。
对上式进行Z变换,得到数字滤波器的系统函数H(z)
经过一系列变换得到:
(2)双线性变换法
这种变换方法,采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到±π/T之间,再转换到z平面上。设Ha(s),s=jΩ,经过非线性频率压缩后用Ha(s1),表示,这里用正切变换实现频率压缩:
式中T仍是采样间隔,当Ω1从-π/T经过0变化到π/T时,Ω则由-∞经过0变化到+∞,实现了s平面上整个虚轴完全压缩到s1平面上虚轴的±π/T之间的转换。这样便有
两种方法比较:
脉冲响应不变法的优点:
1,模拟频率到数字频率的转换时线性的;
2,数字滤波器单位脉冲响应的数字表示近似原型的模拟滤波器单位脉冲响应,因此时域特性逼近好。
缺点:
会产生频谱混叠现象,只适合带限滤波器双线性变换法优点:
克服多值映射得关系,可以消除频率的混叠
缺点:
时域到频域的变换是非线性的,在高频处有较大的失真。
三、数字高通滤波器的设计步骤:
①数字高通滤波器的技术指标为:通带截止频率ωp阻带截止频率ωs通带衰减频率αP阻带衰减频率αs
②预畸变处理,将数字高通指标转换为模拟低通指标
③确定阶数N由(可由模拟低通滤波器设计方法可得
④归一化及去归一化查表令s=s/Ω归一化模拟低通圆型系统函数
⑤低通向高通转化令s1=1/s由频率变换公式
⑥滤波器数字化令利用双线性变换化
数字高通不能采用脉冲响应不变法原因是:脉冲响应不变法有频谱周期延拓效应,因此只能用于带限的频响特性,如衰减特性很好的低通或带通。而高频衰减越大,频响的混淆效应越小,至于高通滤波器,由于它们在高频部分不衰减,因此将完全混淆在低频响应中。
四、数字带通滤波器的设计:
步骤:
(1)确定性能指标:在设计带通滤波器之前,首先根据工程实际的需要确定滤
波器的技术指标:通带截止频率wc1,wc2、阻带截止频率wr1,wr2、阻带最小衰减αs通带最大衰减αp
(2)对带通数字滤波器H(z)的数字边界频率预畸变
得到带通模拟滤波器H(s)的边界频率
主要是通带截止频率ωp1,ωp2;阻带截止频率ωs1,ωs2的转换。
对双线性变换法一般T=2s
通带截止频率wc1=(2/T)*tan(wp1/2)、wc2=(2/T)*tan(wp2/2)
阻带截止频率wr1=(2/T)*tan(ws1/2)、wr2=(2/T)*tan(ws2/2)
阻带最小衰减αs通带最大衰减αp
(3)低通到带通频率变换
将模拟带通滤波器指标转换为模拟低通滤波器指标。
B=wc2-wc1
normwr1=(((wr1^2)-(w0^2))/(B*wr1))
normwr2=(((wr2^2)-(w0^2))/(B*wr2))
normwc1=(((wc1^2)-(w0^2))/(B*wc1))
normwc2=(((wc2^2)-(w0^2))/(B*wc2))
模拟低通滤波器指标:
normwc,normwr,αp,αs
(4)设计模拟低通原型滤波器。查表得到归一化低通传输函数G(p):
用模拟低通滤波器设计方法(由巴特沃斯设计步骤或切比雪夫设计步骤)得到模拟低通滤波器的传输函数Ha(s)
(5)模拟低通滤波器转化为模拟带通滤波器。
(6)利用双线性变换法将模拟带通滤波器Ha(s)转换成数字带通滤波器H(z)
两种方法比较比较:
脉冲响应不变法数字滤波器单位脉冲响应的数字表示近似原型的模拟滤波器单位脉冲响应,因此时域特性逼近好。但会产生频谱混叠现象,只适合带限滤波器双线性变换法可以克服多值映射得关系,可以消除频率的混叠但时域到频域的变换是非线性的,在高频处有较大的失真。
五、数字带阻滤波器的设计:
步骤:
(1)确定性能指标:
通带截止频率wc1,wc2、阻带截止频率wr1,wr2、阻带最小衰减αs通带最大衰减αp
(2)对带通数字滤波器H(z)的数字边界频率预畸变
主要是通带截止频率ωp1,ωp2;阻带截止频率ωs1,ωs2的转换。
对双线性变换法一般T=2s
通带截止频率wc1=(2/T)*tan(wp1/2)、wc2=(2/T)*tan(wp2/2)
阻带截止频率wr1=(2/T)*tan(ws1/2)、wr2=(2/T)*tan(ws2/2)
阻带最小衰减αs通带最大衰减αp
(由模拟低通滤波器设计方法可得
模拟低通滤波器确定模拟带阻滤波器
由模拟低通到模拟带阻的变换这一模拟低通到带阻的变换关系为
数字带阻滤波器不能用脉冲响应不变法:原因是脉冲响应不变法有频谱周期延拓效应,因此只能用于带限的频响特性,如衰减特性很好的低通或带通。而高频衰减越大,频响的混淆效应越小,至于带阻滤波器,由于它们在高频部分不衰减,因此将完全混淆在低频响应中。
评论
查看更多