65W氮化镓电源原理图
2022-10-04 22:09:30
氮化镓(GaN)功率集成电路集成与应用
2023-06-19 12:05:19
(86) ,因此在正常体温下,它会在人的手中融化。
又过了65年,氮化镓首次被人工合成。直到20世纪60年代,制造氮化镓单晶薄膜的技术才得以出现。作为一种化合物,氮化镓的熔点超过1600℃,比硅高
2023-06-15 15:50:54
从将PC适配器的尺寸减半,到为并网应用创建高效、紧凑的10 kW转换,德州仪器为您的设计提供了氮化镓解决方案。LMG3410和LMG3411系列产品的额定电压为600 V,提供从低功率适配器到超过2 kW设计的各类解决方案。
2019-08-01 07:38:40
的数十亿次的查询,便可以获得数十亿千瓦时的能耗。
更有效地管理能源并占用更小空间,所面临的挑战丝毫没有减弱。氮化镓(GaN)等新技术有望大幅改进电源管理、发电和功率输出的诸多方面。预计到2030年
2019-03-14 06:45:11
被誉为第三代半导体材料的氮化镓GaN。早期的氮化镓材料被运用到通信、军工领域,随着技术的进步以及人们的需求,氮化镓产品已经走进了我们生活中,尤其在充电器中的应用逐步布局开来,以下是采用了氮化镓的快
2020-03-18 22:34:23
的挑战丝毫没有减弱。氮化镓(GaN)等新技术有望大幅改进电源管理、发电和功率输出的诸多方面。预计到2030年,电力电子领域将管理大约80%的能源,而2005年这一比例仅为30%1。这相当于30亿千瓦时以上
2020-11-03 08:59:19
能源并占用更小空间,所面临的挑战丝毫没有减弱。氮化镓(GaN)等新技术有望大幅改进电源管理、发电和功率输出的诸多方面。预计到2030年,电力电子领域将管理大约80%的能源,而2005年这一比例仅为30
2018-11-20 10:56:25
在所有电力电子应用中,功率密度是关键指标之一,这主要由更高能效和更高开关频率驱动。随着基于硅的技术接近其发展极限,设计工程师现在正寻求宽禁带技术如氮化镓(GaN)来提供方案。
2020-10-28 06:01:23
技术迭代。2018 年,氮化镓技术走出实验室,正式运用到充电器领域,让大功率充电器迅速小型化,体积仅有传统硅(Si)功率器件充电器一半大小,氮化镓快充带来了充电器行业变革。但作为新技术,当时氮化镓
2022-06-14 11:11:16
是什么氮化镓(GaN)是氮和镓化合物,具体半导体特性,早期应用于发光二极管中,它与常用的硅属于同一元素周期族,硬度高熔点高稳定性强。氮化镓材料是研制微电子器件的重要半导体材料,具有宽带隙、高热导率等特点,应用在充电器方面,主要是集成氮化镓MOS管,可适配小型变压器和高功率器件,充电效率高。二、氮化
2021-09-14 08:35:58
氮化镓功率半导体技术解析基于GaN的高级模块
2021-03-09 06:33:26
氮化镓为单开关电路准谐振反激式带来了低电荷(低电容)、低损耗的优势。和传统慢速的硅器件,以及分立氮化镓的典型开关频率(65kHz)相比,集成式氮化镓器件提升到的 200kHz。
氮化镓电源 IC 在
2023-06-15 15:35:02
更小:GaNFast™ 功率芯片,可实现比传统硅器件芯片 3 倍的充电速度,其尺寸和重量只有前者的一半,并且在能量节约方面,它最高能节约 40% 的能量。
更快:氮化镓电源 IC 的集成设计使其非常
2023-06-15 15:32:41
,这样可以确保氮化镓器件长期稳定运行。陶瓷封装氮化镓器件还能够适应高功耗水平。不过,利用陶瓷封装氮化镓组件的明显缺点是较高的封装成本和繁琐的组装过程。这种额外地借助人工带来了相当大的额外成本。随着塑料封装
2017-08-15 17:47:34
本文展示氮化镓场效应晶体管并配合LM5113半桥驱动器可容易地实现的功率及效率。
2021-04-13 06:01:46
波段,随着衬底、外延、芯片和封装技术的不断进步,蓝光激光器的性能在不断提升。 图3、(a)氮化镓/蓝宝石模板和(b)GaN自支撑衬底的位错缺陷对比(图中暗斑为位错缺陷) 在衬底方面,早期的氮化镓
2020-11-27 16:32:53
氮化镓电源设计从入门到精通,这个系列直播共分为八讲,本篇第六讲将为您介绍EMC优化和整改技巧,助您完成电源工程师从入门到精通的蜕变。前期回顾(点击下方内容查看上期直播):- 第一讲:元器件选型
2021-12-29 06:31:58
射频半导体技术的市场格局近年发生了显著变化。 数十年来,横向扩散金属氧化物半导体(LDMOS)技术在商业应用中的射频半导体市场领域起主导作用。如今,这种平衡发生了转变,硅基氮化镓(GaN-on-Si
2018-08-17 09:49:42
GaN如何实现快速开关?氮化镓能否实现高能效、高频电源的设计?
2021-06-17 10:56:45
氮化镓 (GaN) 可为便携式产品提供更小、更轻、更高效的桌面 AC-DC 电源。Keep Tops 氮化镓(GaN)是一种宽带隙半导体材料。 当用于电源时,GaN 比传统硅具有更高的效率、更小
2023-08-21 17:06:18
AN011: NV612x GaNFast功率集成电路(氮化镓)的热管理
2023-06-19 10:05:37
`Cree的CGHV96100F2是氮化镓(GaN)高电子迁移率晶体管(HEMT)在碳化硅(SiC)基板上。 该GaN内部匹配(IM)FET与其他技术相比,具有出色的功率附加效率。 氮化镓与硅或砷化
2020-12-03 11:49:15
深圳市尊信电子技术有限公司专业开发设计电子产品方案钰泰,智融,赛芯微一级代理吉娜:*** 微信:mphanfan欢迎行业客户联系,获取datasheet、报价、样片等更多产品信息氮化镓技术的普及,使
2021-11-28 11:16:55
GaN功率半导体(氮化镓)的系统集成优势
2023-06-19 09:28:46
功率氮化镓电力电子器件具有更高的工作电压、更高的开关频率、更低的导通电阻等优势,并可与成本极低、技术成熟度极高的硅基半导体集成电路工艺相兼容,在新一代高效率、小尺寸的电力转换与管理系统、电动机
2018-11-05 09:51:35
赶上甚至超过了成本昂贵的硅上氮化镓产品的替代技术。我们期待这项合作让这些GaN创新在硅供应链内结出硕果,最终服务于要求最高的客户和应用。”意法半导体汽车与分立器件产品部总裁Marco Monti表示
2018-02-12 15:11:38
$0.1/KWh,仅将新的宏基站替换使用氮化镓技术,一年节省的电费可超过$100M。MACOM公司的MAGb功率晶体管系列在真实的基站工作温度200°C的环境下MTTF超过106小时,由此可见该器件在
2017-08-30 10:51:37
可以做得更大,成长周期更短。MACOM现在已经在用8英寸晶圆生产氮化镓器件,与很多仍然用4英寸设备生产碳化硅基氮化镓的厂商不同。MACOM的氮化镓技术用途广泛,在雷达、军事通信、无线和有线宽带方面都有
2017-09-04 15:02:41
的各个电端子之间的距离缩短十倍。这样可以实现更低的电阻损耗,以及电子具备更短的转换时间。总的来说,氮化镓器件具备更快速的开关、更低的功率损耗及更低的成本优势。由于氮化镓技术在低功耗、小尺寸等方面具有独特
2017-07-18 16:38:20
系列光隔离探头现场条件因该氮化镓快充PCBA设计密度很高,阻容采用0402器件,只能采用不是最优方案的同轴延长线连接(通常推荐采用MCX母座连接,可最大限度减少引线误差)。现场连接图如下:▲图1:接线
2023-01-12 09:54:23
`明佳达优势供应NV6115氮化镓MOS+NCP1342主控芯片PWM控制器丝印1342AMDCD。产品信息1、NV6115氮化镓MOS丝印:NV6115芯片介绍:NV6115氮化镓MOS,是针对
2021-01-08 17:02:10
)1.1脉冲条件脉冲宽度:120µsec,占空比10%笔记Tc(op)= + 25°CSG36F30S-D基站用晶体管SGN350H-R氮化镓晶体管SGN1214-220H-R氮化镓晶体管
2021-03-30 11:14:59
)1.1脉冲条件脉冲宽度:120µsec,占空比10%笔记Tc(op)= + 25°CSG36F30S-D基站用晶体管SGN350H-R氮化镓晶体管SGN1214-220H-R氮化镓晶体管
2021-03-30 11:24:16
书籍:《炬丰科技-半导体工艺》文章:氮化镓发展技术编号:JFSJ-21-041作者:炬丰科技网址:http://www.wetsemi.com/index.html 摘要:在单个芯片上集成多个
2021-07-06 09:38:20
Canaccord Genuity预计,到2025年,电动汽车解决方案中每台汽车的半导体构成部分将增加50%或更多。本文将探讨氮化镓(GaN)电子器件,也涉及到一点碳化硅(SiC),在不增加汽车成本的条件下
2018-07-19 16:30:38
当测定氮化镓(GaN)晶体管的皮秒量级上升时间时,即使有1GHz的观察仪器和1GHz的探针仍可能不够。准确测定GaN晶体管的上升和下降时间需要细心留意您的测量设置和设备。让我们初步了解一下使用TI
2018-09-07 14:52:23
氮化镓(GaN)的重要性日益凸显,增加。因为它与传统的硅技术相比,不仅性能优异,应用范围广泛,而且还能有效减少能量损耗和空间的占用。在一些研发和应用中,传统硅器件在能量转换方面,已经达到了它的物理
2023-06-15 15:47:44
度为1.1 eV,而氮化镓的禁带宽度为3.4 eV。由于宽禁带材料具备高电场强度,耗尽区窄短,从而可以开发出载流子浓度非常高的器件结构。例如,一个典型的650V横向氮化镓晶体管,可以支持超过800V
2023-06-15 15:53:16
目前,以碳化硅(SiC)、氮化镓(GaN)等“WBG(Wide Band Gap,宽禁带,以下简称为:WBG)”以及基于新型材料的电力半导体,其研究开发技术备受瞩目。根据日本环保部提出的“加快
2023-02-23 15:46:22
两年多前,德州仪器宣布推出首款600V氮化镓(GaN)功率器件。该器件不仅为工程师提供了功率密度和效率,且易于设计,带集成栅极驱动和稳健的器件保护。从那时起,我们就致力于利用这项尖端技术将功率级
2020-10-27 09:28:22
。
氮化镓功率芯片可以使充电器的充电速度提高 3 倍,但体积和重量只有传统硅器件充电器的一半。或者在不增加体积或重量的情况下,提高充电器 3 倍的充电功率。
2023-06-15 14:17:56
通过SMT封装,GaNFast™ 氮化镓功率芯片实现氮化镓器件、驱动、控制和保护集成。这些GaNFast™功率芯片是一种易于使用的“数字输入、电源输出” (digital in, power out
2023-06-15 16:03:16
、高功率、高效率的微电子、电力电子、光电子等器件方面的领先地位。『三点半说』经多方专家指点查证,特推出“氮化镓系列”,告诉大家什么是氮化镓(GaN)?
2019-07-31 06:53:03
的 3 倍多,所以说氮化镓拥有宽禁带特性(WBG)。
禁带宽度决定了一种材料所能承受的电场。氮化镓比传统硅材料更大的禁带宽度,使它具有非常细窄的耗尽区,从而可以开发出载流子浓度非常高的器件结构。由于氮化
2023-06-15 15:41:16
几十倍、甚至上百倍的数量增加,因此成本的控制非常关键,而硅基氮化镓在成本上具有巨大的优势,随着硅基氮化镓技术的成熟,它能以最大的性价比优势取得市场的突破。[color=rgb(51, 51, 51
2019-07-08 04:20:32
传统的硅组件、碳化硅(Sic)和氮化镓(GaN)伴随着第三代半导体电力电子器件的诞生,以碳化硅(Sic)和氮化镓(GaN)为代表的新型半导体材料走入了我们的视野。SiC和GaN电力电子器件由于本身
2021-09-23 15:02:11
易于驱动,不应产生高电磁干扰等不利影响,而且要耐用,当然还要成本低。栅极驱动至关重要驱动碳化硅和氮化镓器件的栅极可能是最重要的考虑因素,在大多数情况下,这比驱动IGBT和MOSFET更难。这两种成熟
2023-02-05 15:14:52
明佳达电子优势供应氮化镓功率芯片NV6127+晶体管AON6268丝印6268,只做原装,价格优势,实单欢迎洽谈。产品信息型号1:NV6127丝印:NV6127属性:氮化镓功率芯片封装:QFN芯片
2021-01-13 17:46:43
客户希望通过原厂FAE尽快找到解决方案,或者将遇到技术挫折归咎为芯片本身设计问题,尽管不排除芯片可能存在不适用的领域,但是大部分时候是应用层面的问题,和芯片没有关系。这种情况对新兴的第三代半导体氮化镓
2023-02-01 14:52:03
)、氮化镓(GaN)、碳化硅(SiC)、双极硅、绝缘硅(SoI)和蓝宝石硅(SoS)等工艺技术给业界提供了丰富的选择。虽然半导体器件的集成度越来越高,但分立器件同样在用这些工艺制造。随着全球电信网络向
2019-07-05 08:13:58
在过去的十多年里,行业专家和分析人士一直在预测,基于氮化镓(GaN)功率开关器件的黄金时期即将到来。与应用广泛的MOSFET硅功率器件相比,基于GaN的功率器件具有更高的效率和更强的功耗处理能力
2019-06-21 08:27:30
精通,这个系列直播共分为八讲,从0到1全面解密电源设计,带工程师完整地设计一个高效氮化镓电源,包括元器件选型、电路设计和PCB布线、电路测试和优化技巧、磁性元器件的设计和优化、环路分析和优化、能效分析
2020-11-18 06:30:50
如何带工程师完整地设计一个高效氮化镓电源,包括元器件选型、电路设计和PCB布线、电路测试和优化技巧、磁性元器件的设计和优化、环路分析和优化、能效分析和优化、EMC优化和整改技巧、可靠性评估和分析。
2021-06-17 06:06:23
我经常感到奇怪,我们的行业为什么不在加快氮化镓 (GaN) 晶体管的部署和采用方面加大合作力度;毕竟,大潮之下,没人能独善其身。每年,我们都看到市场预测的前景不太令人满意。但通过共同努力,我们就能够大大增加
2022-11-16 06:43:23
如何实现小米氮化镓充电器是一个c to c 的一个充电器拯救者Y7000提供了Type-c的端口,但这个口不可以充电,它是用来转VGA,HDMI,DP之类了,可以外接显示器,拓展坞之类的。要用氮化镓
2021-09-14 06:06:21
导读:将GaN FET与它们的驱动器集成在一起可以改进开关性能,并且能够简化基于GaN的功率级设计。氮化镓 (GaN) 晶体管的开关速度比硅MOSFET快很多,从而有可能实现更低的开关损耗。然而,当
2022-11-16 06:23:29
如何设计GaN氮化镓 PD充电器产品?
2021-06-15 06:30:55
的性能已接近理论极限[1-2],而且市场对更高功率密度的需求日益增加。氮化镓(GaN)晶体管和IC具有优越特性,可以满足这些需求。
氮化镓器件具备卓越的开关性能,有助消除死区时间且增加PWM频率,从而
2023-06-25 13:58:54
氮化镓技术非常适合4.5G或5G系统,因为频率越高,氮化镓的优势越明显。那对于手机来说射频GaN技术还需解决哪些难题呢?
2019-07-31 06:53:15
5G系统,因为频率越高,氮化镓的优势越明显。但对于手机而言,氮化镓材料还有很多难题需要解决,例如功耗、散热与成本。 不同工艺比较(数据来源于OKI半导体)射频氮化镓技术是5G的绝配虽然氮化镓用到
2016-08-30 16:39:28
大幅降低电流在保护板上的损耗,随着手机充电功率达到200W,电池端的电流达到20A。传统硅MOS温升明显,甚至需要辅助导热措施来为其散热。使用氮化镓代替硅MOS之后,可以无需导热材料,降低快充过程中
2023-02-21 16:13:41
30W超薄氮化镓充电器ANKER Powerport Atom III Slim因为内置了氮化镓元器件,体型可以做的非常的纤薄,只有0.63英寸(约1.6cm)厚,并且是可折叠插脚设计,可以轻松装进
2021-04-16 09:33:21
这样的领导者正在将氮化镓和固态半导体技术与这些过程相结合,以更低的成本进行广泛使用,从而改变行业的基础状况。采油与传统的干燥和加热方法相比,射频能量使用更少的能量,而且高精度可使每瓦都得到有效利用。从
2018-01-18 10:56:28
以适当的注意,测试设备和测量技术引入的寄生元件,特别是在较高频率下工作,可能会使GaN器件参数黯然失色,并导致错误的测量结果。 应用说明“高速氮化镓E-HEMT的测量技术”(GN003)解释了测量技术
2023-02-21 16:30:09
功率,降额使用。
PI官方的资料显示,INN3378C属于InnoSwitch3-Pro家族,它采用了PI独家的PowiGaN技术,也就是内置了GaN氮化镓功率器件,相比传统MOSFET可以输出更大
2023-06-16 14:05:50
两年多前,德州仪器宣布推出首款600V氮化镓(GaN)功率器件。该器件不仅为工程师提供了功率密度和效率,且易于设计,带集成栅极驱动和稳健的器件保护。从那时起,我们就致力于利用这项尖端技术将功率级
2022-11-10 06:36:09
小得多,因此每块晶圆就可以生产出更多的氮化镓器件,从而实现可量产、具低成本、成熟、迅速反应和非常易于扩展的供应链。
误解5 :GaN FET和集成电路的价格昂贵
这是关于氮化镓技术最常见的错误观念! 氮化
2023-06-25 14:17:47
请问半桥上管氮化镓这样的开尔文连接正确吗?
2024-01-11 07:23:47
射频半导体技术的市场格局近年发生了显著变化。数十年来,横向扩散金属氧化物半导体(LDMOS)技术在商业应用中的射频半导体市场领域起主导作用。如今,这种平衡发生了转变,硅基氮化镓(GaN-on-Si)技术成为接替传统LDMOS技术的首选技术。
2019-09-02 07:16:34
日前,在广州举行的2013年LED外延芯片技术及设备材料最新趋势专场中,晶能光电硅衬底LED研发副总裁孙钱博士向与会者做了题为“硅衬底氮化镓大功率LED的研发及产业化”的报告,与同行一道分享了硅衬底
2014-01-24 16:08:55
5G将于2020年将迈入商用,加上汽车走向智慧化、联网化与电动化的趋势,将带动第三代半导体材料碳化硅(SiC)与氮化镓(GaN)的发展。根据拓墣产业研究院估计,2018年全球SiC基板产值将达1.8
2019-05-09 06:21:14
镓基MIMO天线,尽管价格较高,但功耗降低了40%,裸片面积减少94%。资料来源:国金证券根据Yole预测,2018年GaN射频器件市场规模达到4.57亿美元,未来5年复合增长率超过23%。在整个射频
2019-04-13 22:28:48
纳微集成氮化镓电源解决方案及应用
2023-06-19 11:10:07
化镓(GaAs)、氮化镓(GaN)和碳化硅(SiC)为代表的化合物半导体材料和以石墨烯为代表的碳基材料。了解每种新型材料及其应用在技术成熟度曲线的位置,对我们研发、投资切入有着极其重要的意义。作为
2017-02-22 14:59:09
氮化镓GaN是什么?
2021-06-16 08:03:56
candence中的Spice模型可以修改器件最基本的物理方程吗?然后提取参数想基于candence model editor进行氮化镓器件的建模,有可能实现吗?求教ICCAP软件呢?
2019-11-29 16:04:02
,是氮化镓功率芯片发展的关键人物。
首席技术官 Dan Kinzer在他长达 30 年的职业生涯中,长期担任副总裁及更高级别的管理职位,并领导研发工作。他在硅、碳化硅(SiC)和氮化镓(GaN)功率芯片方面
2023-06-15 15:28:08
了当时功率半导体界的一项大胆技术:氮化镓(GaN)。对于强大耐用的射频放大器在当时新兴的宽带无线网络、雷达以及电网功率切换应用中的使用前景,他们表达了乐观的看法。他们称氮化镓器件为“迄今为止最坚固耐用
2023-02-27 15:46:36
、尺寸和重量。碳化硅和氮化镓器件在常态传导损耗和击穿电压方面的极值更高,让它们具有相比硅器件更好的性能表现(参见下图)。但在电子领域,选择哪款器件,很难做到直截了当。随着销售额的增长,现有的IGBT
2023-02-05 15:16:14
电压,可直接用于驱动氮化镓功率管;芯片工作于带谷底锁定功能的谷底开启模式,同时集成频率抖动功能以优化 EMI 性能;当负载降低时,芯片从 PFM 模式切换至 BURST 模式工作以优化轻载效率,空载待机
2023-03-28 10:24:46
就可以实现。正是由于我们推出了LMG3410—一个用开创性的氮化镓 (GaN) 技术搭建的高压、集成驱动器解决方案,相对于传统的、基于硅材料的技术,创新人员将能够创造出更加小巧、效率更高、性能更佳
2022-11-16 07:42:26
就可以实现。正是由于我们推出了LMG3410—一个用开创性的氮化镓 (GaN) 技术搭建的高压、集成驱动器解决方案,相对于传统的、基于硅材料的技术,创新人员将能够创造出更加小巧、效率更高、性能更佳
2018-08-30 15:05:50
硅基氮化镓是一个正在走向成熟的颠覆性半导体技术,硅基氮化镓技术是一种将氮化镓器件直接生长在传统硅基衬底上的制造工艺。在这个过程中,由于氮化镓薄膜直接生长在硅衬底上,可以利用现有硅基半导体制造基础设施实现低成本、大批量的氮化镓器件产品的生产。
2023-02-06 16:44:262277
评论
查看更多