SiC FET由UnitedSiC率先制造,现已推出第四代产品。第四代产品改进了单元密度以降低单位面积的导通电阻(RDS.A),运用银烧结粘接和晶圆减薄技术改进了热设计,从而尽量减小了到基片的热阻。
2021-05-19 07:06:003205 有使用过SIC MOSFET 的大佬吗 想请教一下驱动电路是如何搭建的。
2021-04-02 15:43:15
SIC438BEVB-B
2023-04-06 23:31:02
与IGBT相比,SiC MOSFET具备更快的开关速度、更高的电流密度以及更低的导通电阻,非常适用于电网转换、电动汽车、家用电器等高功率应用。但是,在实际应用中,工程师需要考虑SiC MOSFET
2019-07-09 04:20:19
的上限。SiC晶体管的出现几乎消除了IGBT的开关损耗,以实现类似的导通损耗(实际上,在轻载时更低)和电压阻断能力,除了降低系统的总重量和尺寸外,还能实现前所未有的效率。 然而,与大多数颠覆性技术
2023-02-27 13:48:12
SiC SBD 晶圆级测试 求助:需要测试的参数和测试方法谢谢
2020-08-24 13:03:34
设计得低,开启电压也可以做得低一些,但是这也将导致反向偏压时的漏电流增大。ROHM的第二代SBD通过改进制造工艺,成功地使漏电流和恢复性能保持与旧产品相等,而开启电压降低了约0.15V。SiC
2019-03-14 06:20:14
设计得低,开启电压也可以做得低一些,但是这也将导致反向偏压时的漏电流增大。ROHM的第二代SBD通过改进制造工艺,成功地使漏电流和恢复性能保持与旧产品相等,而开启电压降低了约0.15V。SiC
2019-04-22 06:20:22
电阻低,通道电阻高,因此具有驱动电压即栅极-源极间电压Vgs越高导通电阻越低的特性。下图表示SiC-MOSFET的导通电阻与Vgs的关系。导通电阻从Vgs为20V左右开始变化(下降)逐渐减少,接近
2018-11-30 11:34:24
Si-MOSFET大得多。而在给栅极-源极间施加18V电压、SiC-MOSFET导通的条件下,电阻更小的通道部分(而非体二极管部分)流过的电流占支配低位。为方便从结构角度理解各种状态,下面还给出了MOSFET的截面图
2018-11-27 16:40:24
说明一下,DMOS是平面型的MOSFET,是常见的结构。Si的功率MOSFET,因其高耐压且可降低导通电阻,近年来超级结(Super Junction)结构的MOSFET(以下简称“SJ-MOSFET
2018-11-30 11:35:30
通过电导率调制,向漂移层内注入作为少数载流子的空穴,因此导通电阻比MOSFET还要小,但是同时由于少数载流子的积聚,在Turn-off时会产生尾电流,从而造成极大的开关损耗。 SiC器件漂移层的阻抗
2023-02-07 16:40:49
电导率调制,向漂移层内注入作为少数载流子的空穴,因此导通电阻比MOSFET还要小,但是同时由于少数载流子的积聚,在Turn-off时会产生尾电流,从而造成极大的开关损耗。SiC器件漂移层的阻抗比Si器件低
2019-04-09 04:58:00
对体二极管进行1000小时的直流8A通电测试,结果如下。试验证明,所有特性如导通电阻,漏电流等都没有变化。短路耐受能力由于SiC-MOSFET与Si-MOSFET相比具有更小的芯片面积和更高的电流密度
2018-11-30 11:30:41
,但由于第三代(3G)SiC-MOSFET导通电阻更低,晶体管数得以从8个减少到4个。关于效率,采用第三代(3G)SiC-MOSFET时的结果最理想,无论哪种SiC-MOSFET的效率均超过Si IGBT
2018-11-27 16:38:39
电流IF的VF特性图。是从25℃到200℃按8个级别的温度条件测量的数据。SiC-SBD随着温度的上升,IF开始流动,VF有些下降,但因电阻上升,斜率变缓和,在正常使用范围的IF下,VF上升
2018-11-30 11:52:08
时间trr快(可高速开关)・trr特性没有温度依赖性・低VF(第二代SBD)下面介绍这些特征在使用方面发挥的优势。大幅降低开关损耗SiC-SBD与Si二极管相比,大幅改善了反向恢复时间trr。右侧的图表为
2019-03-27 06:20:11
vs IF)、以及正向电压与抗浪涌电流特性(VF vs IFSM)比较图。第2代SiC-SBD通过改善制造工艺,保持了与以往产品同等的漏电流和trr性能,同时将VF降低了约0.15V。因而改善了VF带来
2018-11-30 11:51:17
耐压。要想提高Si-SBD的耐压,只要增厚图中的n-型层、降低载流子浓度即可,但这会带来阻值上升、VF变高等损耗较大无法实际应用的问题。因此,Si-SBD的耐压200V已经是极限。而SiC拥有超过硅
2018-11-29 14:35:50
基于SiC/GaN的新一代高密度功率转换器SiC/GaN具有的优势
2021-03-10 08:26:03
SiC46x是什么?SiC46x有哪些优异的设计?SiC46x的主要应用领域有哪些?
2021-07-09 07:11:50
前面对SiC的物理特性和SiC功率元器件的特征进行了介绍。SiC功率元器件具有优于Si功率元器件的更高耐压、更低导通电阻、可更高速工作,且可在更高温条件下工作。接下来将针对SiC的开发背景和具体优点
2018-11-29 14:35:23
电导率调制,向漂移层内注入作为少数载流子的空穴,因此导通电阻比MOSFET还要小,但是同时由于少数载流子的积聚,在Turn-off时会产生尾电流,从而造成极大的开关损耗。SiC器件漂移层的阻抗比Si器件低
2019-05-07 06:21:55
电流和FRD的恢复电流引起的较大的开关损耗,通过改用SiC功率模块可以明显减少,因此具有以下效果:开关损耗的降低,可以带来电源效率的改善和散热部件的简化(例:散热片的小型化,水冷/强制风冷的自然风冷化
2019-05-06 09:15:52
,相同耐压的器件,SiC的单位面积的漂移层阻抗可以降低到Si的1/300。而Si材料中,为了改善伴随高耐压化而引起的导通电阻增大的问题,主要采用如IGBT(Insulated Gate Bipolar
2019-07-23 04:20:21
速度和寄生电容的特征。开关速度:与IGBT的比较下图是开关导通时和开关关断时的dV/dt、即开关速度与IGBT模块的比较。SiC模块的开关导通时的dV/dt与IGBT模块几乎相同,依赖于外置的栅极电阻
2018-11-30 11:31:17
电流和FRD的恢复电流引起的较大的开关损耗,通过改用SiC功率模块可以明显减少,因此具有以下效果:开关损耗的降低,可以带来电源效率的改善和散热部件的简化(例:散热片的小型化,水冷/强制风冷的自然风冷化
2019-03-25 06:20:09
与硅相比,SiC有哪些优势?SiC器件与硅器件相比有哪些优越的性能?碳化硅器件的缺点有哪些?
2021-07-12 08:07:35
横截面 (b)SiPLIT模块的横截面 图9 采用平面互连技术的SiC器件 与引线键合方式相比,平面互连技术的芯片接触面积高达90%,并提供更大的横截面。因此,采用平面互连技术芯片的封装电阻降低25
2023-02-27 14:22:06
的Si-PND不同。Si-FRD随着温度升高电阻下降,VF降低,而SiC-SBD随着温度升高VF也升高。这个特性有利有弊,当并联使用Si- FRD时,当一端的二极管产生电流偏差时可能会发生热失控,而
2018-12-03 15:12:02
Sic MOSFET 主要优势.更小的尺寸及更轻的系统.降低无源器件的尺寸/成本.更高的系统效率.降低的制冷需求和散热器尺寸Sic MOSFET ,高压开关的突破.SCT30N120
2017-07-27 17:50:07
降低电阻值的最好办法有:
使用更好的导体:导体通常比绝缘体低,因此使用金属导线来传输电力可以降低电阻。
增大导体的截面积:导体的截面积越大,电阻就越小,所以使用更粗的电线或管道可以降低电阻。
减小
2023-09-01 17:42:27
使用绝缘栅双极晶体管(IGBT)。但随着半导体技术的进步,碳化硅 (SiC) 金属氧化物半导体场效应晶体管 (MOSFET) 能够以比 IGBT 更高的频率进行开关,通过降低电阻和开关损耗来提高效率
2022-11-02 12:02:05
。碳化硅与Si相比,SiC具有: 1.导通电阻降低两个数量级2.电源转换系统中的功率损耗较少3.更高的热导率和更高的温度工作能力4.由于其物理特性固有的材料优势而提高了性能 SiC在600 V和更高
2022-08-12 09:42:07
项目名称:特种电源开发试用计划:在I项目开发中,有一个关键电源,需要在有限空间,实现高压、大电流脉冲输出。对开关器件的开关特性和导通电阻都有严格要求。随着SIC产品的技术成熟度越来越高,计划把IGBT开关器件换成SIC器件。
2020-04-24 17:57:09
MOSFET整流器和逆变器的工作频率。另外,LC滤波器的截止频率也可以提高,这意味着LC滤波器的容量将会降低,从而降低ACL和ACC滤波电路的损耗和重量。表1APS产品的规格2、基于1.2kV全SiC
2017-05-10 11:32:57
如下图所示,常温25℃,采用SiC SBD开启损耗略好,但125℃时采用SiFRD的开启损耗为SiC SBD的两倍。
图:双脉冲测试不同温度开启损耗对比
3、SiC SBD可以降低电流尖峰,改善系统
2023-10-07 10:12:26
状态之间转换,并且具有更低的导通电阻。例如,900 伏 SiC MOSFET 可以在 1/35 大小的芯片内提供与 Si MOSFET 相同的导通电阻(图 1)。图 1:SiC MOSFET(右侧)与硅
2017-12-18 13:58:36
什么是碳化硅(SiC)?它有哪些用途?碳化硅(SiC)的结构是如何构成的?
2021-06-18 08:32:43
Si-FRD低。SiC-SBD的优势从SiC-SBD的这些特征可以看出,替代Si-PND/FRD的优势是得益于SiC-SBD的“高速性”。 1.trr高速,因此可大幅降低恢复损耗,实现高效率 2.同样
2018-11-29 14:33:47
SiC功率模块”量产。与以往的Si-IGBT功率模块相比,“全SiC”功率模块可高速开关并可大幅降低损耗。关于这一点,根据这之前介绍过的SiC-SBD和SiC-MOSFET的特点与性能,可以很容易理解
2018-11-27 16:38:04
的IGBT模块相比,具有1)可大大降低开关损耗、2)开关频率越高总体损耗降低程度越显著 这两大优势。下图是1200V/300A的全SiC功率模块BSM300D12P2E001与同等IGBT的比较。左图
2018-11-27 16:37:30
和CN4的+18V、CN3和CN6的-3V为驱动器的电源。电路中增加了CGS和米勒钳位MOSFET,使包括栅极电阻在内均可调整。将该栅极驱动器与全SiC功率模块的栅极和源极连接,来确认栅极电压的升高情况
2018-11-27 16:41:26
内置SiC肖特基势垒二极管的IGBT:RGWxx65C系列内置SiC SBD的Hybrid IGBT在FRD+IGBT的车载充电器案例中开关损耗降低67%关键词* • SiC肖特基势垒二极管(SiC
2022-07-27 10:27:04
的优势。大幅降低开关损耗SiC-SBD与Si二极管相比,大幅改善了反向恢复时间trr。右侧的图表为SiC-SBD与Si-FRD(快速恢复二极管)的trr比较。恢复的时间trr很短,二极管关断时的反向电流
2018-12-04 10:26:52
IGBT和SiC MOSFET的电压源驱动和电流源驱动的dv/dt比较。VSD中的栅极电阻表示为Rg,控制CSD栅极电流的等效电阻表示为R奥特雷夫。 从图中可以明显看出,在较慢的开关速度(dv/dt
2023-02-21 16:36:47
的高性价比功率芯片和模块产品。 传统的平面型碳化硅金属氧化物半导体场效应晶体管(Planar SiC MOSFET,例如垂直双扩散金属氧化物晶体管VDMOS)由于器件尺寸较大,影响了器件的特征导通电阻
2020-07-07 11:42:42
ROHM在全球率先实现了搭载ROHM生产的SiC-MOSFET和SiC-SBD的“全SiC”功率模块量产。与以往的Si-IGBT功率模块相比,“全SiC”功率模块可高速开关并可大幅降低
2018-12-04 10:14:32
电流和FRD的恢复电流引起的较大的开关损耗,通过改用SiC功率模块可以明显减少,因此具有以下效果:开关损耗的降低,可以带来电源效率的改善和散热部件的简化(例:散热片的小型化,水冷/强制风冷的自然风冷化
2019-03-12 03:43:18
”是条必经之路。高效率、高性能的功率元器件的更新换代已经迫在眉睫。“功率元器件”广泛分以下两大类:一是以传统的硅半导体为基础的“硅(Si)功率元器件”。二是“碳化硅(SiC)功率元器件”,与Si半导体相比
2017-07-22 14:12:43
结构SiC-MOSFET的量产。这就是ROHM的第三代SiC-MOSFET。沟槽结构在Si-MOSFET中已被广为采用,在SiC-MOSFET中由于沟槽结构有利于降低导通电阻也备受关注。然而,普通的单
2018-12-05 10:04:41
SiC-MOSFET 是碳化硅电力电子器件研究中最受关注的器件。成果比较突出的就是美国的Cree公司和日本的ROHM公司。在国内虽有几家在持续投入,但还处于开发阶段, 且技术尚不完全成熟。从国内
2019-09-17 09:05:05
设计得低,开启电压也可以做得低一些,但是这也将导致反向偏压时的漏电流增大。ROHM的第二代SBD通过改进制造工艺,成功地使漏电流和恢复性能保持与旧产品相等,而开启电压降低了约0.15V。SiC
2019-05-07 06:21:51
深爱全系列支持SIC9531DSIC9532DSIC9533DSIC9534DSIC9535DSIC9536DSIC9537DSIC9538DSIC9539DSIC9942B/DSIC9943B
2021-11-13 14:58:25
低功率因素方案SIC953XD系列:TYPESPFMOSFETPackage **范围SIC9531D 0.514Ω500VSOP7
2021-09-07 17:39:06
Toshiba研发出一种SiC金属氧化物半导体场效应晶体管(MOSFET),其将嵌入式肖特基势垒二极管(SBD)排列成格子花纹(check-pattern embedded SBD),以降低导通电阻
2023-04-11 15:29:18
了。 固有优势加上最新进展 碳化硅的固有优势有很多,如高临界击穿电压、高温操作、具有优良的导通电阻/片芯面积和开关损耗、快速开关等。最近,UnitedSiC采用常关型共源共栅的第三代SiC-FET器件已经
2023-02-27 14:28:47
改善,并进一步降低了第2代达成的低VF。SiC-SBD、SiーSBD、Si-PND的特征SiC-SBD为形成肖特基势垒,将半导体SiC与金属相接合(肖特基结)。结构与Si肖特基势垒二极管基本相同,仅
2019-07-10 04:20:13
方面的所有课题。而且,与传统产品相比,单位面积的导通电阻降低了约30%,实现了芯片尺寸的小型化。另外,通过独创的安装技术,还成功将传统上需要外置的SiC-SBD一体化封装,使SiC-MOSFET的体
2019-03-18 23:16:12
-MOSFET与Si-MOSFET的栅极驱动的不同之处。主要的不同点是SiC-MOSFET在驱动时的VGS稍高,内部栅极电阻较高,因此外置栅极电阻Rg需要采用小阻值。Rg是外置电阻,属于电路设计的范畴。但是,栅极驱动电压
2018-11-27 16:54:24
的两种SiC功率MOSFET,电流强度为45A,输出电阻小于100微欧姆。这些元件将采用HiP247新型封装,该封装是专为SiC功率元件而设计,以提升其散热性能。SiC的导热率是矽的三倍。以意法半导体
2019-06-27 04:20:26
ROHM在全球率先实现了搭载ROHM生产的SiC-MOSFET和SiC-SBD的“全SiC”功率模块量产。与以往的Si-IGBT功率模块相比,“全SiC”功率模块可高速开关并可大幅降低
2018-12-04 10:11:50
研究了SiC表面氢化降低界面态密度的机理。采用缓慢氧化、稀释的HF刻蚀、沸水浸泡的表面氢化处理方法,降低SiC表面态密度。该方法用于SiC器件的表面处理,在100℃以下制备了理想
2009-05-07 20:31:4435 SiC,SiC是什么意思
SiC是一种Ⅳ-Ⅳ族化合物半导体材料,具有多种同素异构类型。其典型结构可分为两类:一类是闪锌矿结构的立方SiC晶型,称为3C
2010-03-04 13:25:266539 罗姆日前发布了耐压为1200V的第二代SiC制MOSFET产品(图1)。特点是与该公司第一代产品相比提高了可靠性、降低了单位面积的导通电阻,以及备有将SiC制肖特基势垒二极管(SBD)和SiC制
2012-06-18 09:58:531593 在SiC功率器件方面,罗姆展示了该公司的第3代产品。SiC MOSFET的第三代产品是采用“双沟道结构”的沟道型。相同芯片尺寸下,导通电阻较原来的平面型SiC MOSFET可降低50%,电容成分
2016-11-23 16:17:511184 罗姆在全球率先实现了搭载罗姆生产的SiC-MOSFET和SiC-SBD的“全SiC功率模块”量产。与以往的Si-IGBT功率模块相比,“全SiC”功率模块可高速开关并可大幅降低损耗。
2018-05-17 09:33:1313514 处在串联位置的电阻,只要有电流通过就会有压降,这就是电阻的分压功能。因此是可以用电阻来降低电压的。
2020-01-24 15:23:0038171 安森美半导体NTBG020N090SC1 SiC MOSFET是一款使用全新的技术碳化硅 (SiC) MOSFET,它具有出色的开关性能和更高的可靠性。此外,该SiC MOSFET具有低导通电阻
2020-06-15 14:19:403728 Charger:OBC)等领域拥有很高的市场份额。此次,导通电阻和短路耐受时间之间取得更好权衡的第4代SiC MOSFET的推出,除现有市场之外,还将加速在以主机逆变器为主的市场中的应用。
2020-06-19 14:21:074198 对于功率半导体来说,当导通电阻降低时短路耐受时间※2就会缩短,两者之间存在着矛盾权衡关系,因此在降低SiC MOSFET的导通电阻时,如何兼顾短路耐受时间一直是一个挑战。
2020-06-22 15:54:12771 ROHM 最近推出了 SiC MOSFET 的新系列产品“SCT3xxx xR 系列”。SCT3xxx xR 系列采用最新的沟槽栅极结构,进一步降低了导通电阻;同时通过采用单独设置栅极驱动器
2020-11-25 10:56:0030 越来越重要。因此,能够进行高频动作,
并且高电压大容量能量损失少的 SiC 功率半导体备受关注。罗姆发布了第 4 代 SiC MOSFET,是第 3 代 SiC MOSFET 的沟槽栅
结构进一步演进,将导通电阻降低约 40%,开关损失降低约 50%。在本应用笔记中,使用第
2022-05-16 11:24:161 与传统的硅器件相比,碳化硅(SiC)器件由于拥有低导通电阻特性以及出色的高温、高频和高压性能,已经成为下一代低损耗半导体可行的候选器件。并且SiC让设计人员能够减少元件的使用,从而进一步降低
2022-06-15 16:00:341368 降低半导体制造成本的一个关键方法是采用更大直径的晶圆。Si CMOS 制造在 90 年代经历了 150 毫米到 200 毫米的转变,随后在十年左右的时间里转向了 300 毫米晶圆。 目前绝大多数功率
2022-07-30 15:48:40569 案例背景 某样品贴片电阻在实际应用环境中出现故障,经排查为电阻值降低导致失效。 分析过程 外观分析 说明: 对样品电阻进行外观检测,电阻三防漆有气泡状态,整体电阻未见异物附着。 X-Ray分析 说明
2023-01-30 15:39:121192 在SiC-MOSFET不断发展的进程中,ROHM于世界首家实现了沟槽栅极结构SiC-MOSFET的量产。这就是ROHM的第三代SiC-MOSFET。沟槽结构在Si-MOSFET中已被广为采用,在SiC-MOSFET中由于沟槽结构有利于降低导通电阻也备受关注。
2023-02-08 13:43:211381 ROHM在全球率先实现了搭载ROHM生产的SiC-MOSFET和SiC-SBD的“全SiC”功率模块量产。与以往的Si-IGBT功率模块相比,“全SiC”功率模块可高速开关并可大幅降低损耗。
2023-02-10 09:41:081333 在SiC MOSFET的开发与应用方面,与相同功率等级的Si MOSFET相比,SiC MOSFET导通电阻、开关损耗大幅降低,适用于更高的工作频率,另由于其高温工作特性,大大提高了高温稳定性。
2023-02-12 15:29:032100 关键要点 ・ SiC MOSFET因其在降低功率转换损耗方面的出色表现而备受关注。 ・ 以DC-DC转换器和EV应用为例,介绍使用新一代(第4代)SiC MOSFET所带来的优势–降低
2023-02-15 23:45:05342 比较SiC开关的数据手册可能很困难。SiC MOSFET在导通电阻温度系数较低的情况下似乎具有优势,但与UnitedSiC FET相比,这表明潜在的损耗更高,整体效率低下。
2023-02-21 09:24:56592 目前,许多企业在SiC MOSFET的批量化制造生产方面遇到了难题,其中如何降低SiC/SiO₂界面缺陷是最令人头疼的问题。
2023-06-13 16:48:17376 据介绍,瞻芯电子开发的第二代SiC MOSFET产品驱动电压(Vgs)为15-18V,可提升应用兼容性,简化应用系统设计。在产品结构上,第二代SiC MOSFET与第一代产品同为平面栅MOSFET,但进一步优化了栅氧化层工艺和沟道设计,使器件比导通电阻降低约25%,并显著降低开关损耗,提升系统效率。
2023-08-23 15:38:01703 相对于IGBT,SiC-MOSFET降低了开关关断时的损耗,实现了高频率工作,有助于应用的小型化。相对于同等耐压的SJ-MOSFET,导通电阻较小,可减少相同导通电阻的芯片面积,并显著降低恢复损耗。
2023-09-11 10:12:33566 我们知道,SiC MOSFET现阶段最“头疼”的问题就是栅氧可靠性引发的导通电阻和阈值电压等问题,最近,日本东北大学提出了一项新的外延生长技术,据说可以将栅氧界面的缺陷降低99.5%,沟道电阻可以降低85.71%,整体SiC MOSFET损耗可以降低30%。
2023-10-11 12:26:49611 SiC器件的主要用途是车载设备。SiC器件可以使纯电动汽车、混合动力车的电机控制系统损失的功率降低到1/10,实现低功耗化;同时,能将新能源汽车的效率提高10%,使用SiC工艺生产的功率器件的导通电阻
2023-10-25 09:40:33414 请问电阻噪声影响选择什么样的电阻能够更好降低电阻噪声? 电阻噪声是电阻器内部的热噪声,由于电阻器内部的电子热运动引起的。为了更好地降低电阻噪声,我们需要选择适合的电阻类型、材料和尺寸,并采取适当
2023-11-09 10:02:111024 使用SiC MOSFET时如何尽量降低电磁干扰和开关损耗
2023-11-23 09:08:34333 在正确的比较中了解SiC FET导通电阻随温度产生的变化
2023-12-15 16:51:34191 常见的降低接地电阻的方法有哪些呢? 降低接地电阻是保证电气设备正常运行和提高设备安全性的重要措施之一。在实际工程应用中,可以采取多种方法来降低接地电阻。下面将详细介绍常见的降低接地电阻的方法。 1.
2024-01-23 15:28:54233 贴片电阻阻值降低失效分析 贴片电阻是电子产品中常见的元件之一。在电路中起着调节电流、电压以及降低噪声等作用。然而,就像其他电子元件一样,贴片电阻也可能发生故障或失效。其中最常见的故障之一是电阻阻值
2024-02-05 13:46:22179
评论
查看更多