电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电子发烧友网>电子技术应用>电子常识>深度卷积神经网络在目标检测中的进展 - 全文

深度卷积神经网络在目标检测中的进展 - 全文

上一页12全文
收藏

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论

查看更多

相关推荐

从AlexNet到MobileNet,带你入门深度神经网络

深度神经网络运用的方法。AlexNet研发的时候,使用的GTX580仅有3GB的显存,所以创造性的把模型拆解两张显卡,架构如下:1.第一层是卷积层,针对224x224x3的输入图片进行卷积操作
2018-05-08 15:57:47

卷积神经网络的定义、结构和发展历史

卷积神经网络(Convolutional Neural Network,CNN)是一种非常重要的机器学习算法,主要应用于图像处理领域,用于图像分类、目标识别、物体检测等任务。该算法是深度学习领域的一个重要分支。下面具体介绍卷积神经网络的定义、结构和发展历史。
2023-08-21 17:26:04165

cnn卷积神经网络简介 cnn卷积神经网络代码

cnn卷积神经网络简介 cnn卷积神经网络代码 卷积神经网络(Convolutional Neural Network,简称CNN)是目前深度学习领域中应用广泛的一种神经网络模型。CNN的出现
2023-08-21 17:16:13291

cnn卷积神经网络算法 cnn卷积神经网络模型

cnn卷积神经网络算法 cnn卷积神经网络模型 卷积神经网络(CNN)是一种特殊的神经网络,具有很强的图像识别和数据分类能力。它通过学习权重和过滤器,自动提取图像和其他类型数据的特征。在过去的几年
2023-08-21 17:15:57292

cnn卷积神经网络原理 cnn卷积神经网络的特点是什么

cnn卷积神经网络原理 cnn卷积神经网络的特点是什么  卷积神经网络(Convolutional Neural Network,CNN)是一种特殊的神经网络结构,主要应用于图像处理和计算机视觉领域
2023-08-21 17:15:25390

卷积神经网络主要包括哪些 卷积神经网络组成部分

,并且处理图像、音频、文本等方面具有非常出色的表现。本文将从卷积神经网络的原理、架构、训练、应用等方面进行详细介绍。 一、卷积神经网络原理 1.1 卷积操作 卷积卷积神经网络最基本的操作之一,也是其命名的来源。卷积
2023-08-21 17:15:22286

卷积神经网络模型的优缺点

等领域中非常流行,可用于分类、分割、检测等任务。而在实际应用卷积神经网络模型有其优点和缺点。这篇文章将详细介绍卷积神经网络模型的特点、优点和缺点。 一、卷积神经网络模型的特点 卷积神经网络是一种前馈神经网络,包含了卷积层、池化层、全连接层等多个层
2023-08-21 17:15:19604

卷积神经网络一共有几层 卷积神经网络模型三层

卷积神经网络一共有几层 卷积神经网络模型三层  卷积神经网络 (Convolutional Neural Networks,CNNs) 是一种深度学习领域中发挥重要作用的模型。它是一种有层次结构
2023-08-21 17:11:53793

卷积神经网络模型搭建

卷积神经网络模型搭建 卷积神经网络模型是一种深度学习算法。它已经成为了计算机视觉和自然语言处理等各种领域的主流算法,具有很大的应用前景。本篇文章将详细介绍卷积神经网络模型的搭建过程,为读者提供一份
2023-08-21 17:11:49203

cnn卷积神经网络模型 卷积神经网络预测模型 生成卷积神经网络模型

cnn卷积神经网络模型 卷积神经网络预测模型 生成卷积神经网络模型  卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习神经网络,最初被广泛应用于计算机
2023-08-21 17:11:47273

常见的卷积神经网络模型 典型的卷积神经网络模型

常见的卷积神经网络模型 典型的卷积神经网络模型 卷积神经网络(Convolutional Neural Network, CNN)是深度学习中最流行的模型之一,其结构灵活,处理图像、音频、自然语言等
2023-08-21 17:11:41471

卷积神经网络深度神经网络的优缺点 卷积神经网络深度神经网络的区别

深度神经网络是一种基于神经网络的机器学习算法,其主要特点是由多层神经元构成,可以根据数据自动调整神经元之间的权重,从而实现对大规模数据进行预测和分类。卷积神经网络深度神经网络的一种,主要应用于图像和视频处理领域。
2023-08-21 17:07:36529

卷积神经网络是什么?卷积神经网络的工作原理和应用

  卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习神经网络,主要用于图像和视频的识别、分类和预测,是计算机视觉领域中应用最广泛的深度学习算法之一。该网络模型可以自动从原始数据中学习有用的特征,并将其映射到相应的类别。
2023-08-21 17:03:46440

卷积神经网络基本结构 卷积神经网络主要包括什么

卷积神经网络基本结构 卷积神经网络主要包括什么 卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛用于图像识别、自然语言处理、语音识别等领域
2023-08-21 16:57:19420

卷积神经网络算法流程 卷积神经网络模型工作流程

卷积神经网络算法流程 卷积神经网络模型工作流程  卷积神经网络(Convolutional Neural Network,CNN)是一种广泛应用于目标跟踪、图像识别和语音识别等领域的深度学习模型,其
2023-08-21 16:50:19361

卷积神经网络算法的核心思想

卷积神经网络算法的核心思想 卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习算法,是机器学习领域中一种图像识别、语音识别、自然语言处理等领域具有
2023-08-21 16:50:17232

卷积神经网络算法代码matlab

卷积神经网络算法代码matlab 卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习网络模型,其特点是具有卷积层(Convolutional Layer
2023-08-21 16:50:11301

卷积神经网络算法的优缺点

卷积神经网络算法的优缺点 卷积神经网络是一种广泛应用于图像、语音等领域的深度学习算法。在过去几年里,CNN的研究和应用有了飞速的发展,取得了许多重要的成果,如在图像分类、目标识别、人脸识别、自然语言
2023-08-21 16:50:041331

卷积神经网络算法有哪些?

卷积神经网络算法有哪些?  卷积神经网络(Convolutional Neural Network, CNN) 是一种基于多层感知器(multilayer perceptron, MLP)的深度学习
2023-08-21 16:50:01264

卷积神经网络算法原理

卷积神经网络算法原理  卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习(Deep Learning)的模型,它能够自动地从图片、音频、文本等数据中提
2023-08-21 16:49:54228

卷积神经网络算法比其他算法好吗

、HOG、SURF等,卷积神经网络识别准确率上表现更为突出。本文将介绍卷积神经网络并探讨其与其他算法的优劣之处。 一、卷积神经网络 卷积神经网络可以高效地处理大规模的输入图像,其核心思想是使用卷积层和池化层构建深度模型。卷积操作是卷积神经网络的核心操作,其可以有效地
2023-08-21 16:49:51186

卷积神经网络算法是机器算法吗

卷积神经网络算法是机器算法吗  卷积神经网络算法是机器算法的一种,它通常被用于图像、语音、文本等数据的处理和分类。随着深度学习的兴起,卷积神经网络逐渐成为了图像、语音等领域中最热门的算法之一。 卷积
2023-08-21 16:49:48175

卷积神经网络的介绍 什么是卷积神经网络算法

深度学习算法。CNN模型最早被提出是为了处理图像,其模型结构包含卷积层、池化层和全连接层等关键技术,经过多个卷积层和池化层的处理,CNN可以提取出图像的特征信息,从而对图像进行分类。 一、卷积神经网络算法 卷积神经网络算法最早起源于图像处理领域。它是一种深
2023-08-21 16:49:46276

卷积神经网络层级结构 卷积神经网络卷积层讲解

卷积神经网络层级结构 卷积神经网络卷积层讲解 卷积神经网络(Convolutional Neural Network,CNN)是一种基于深度学习的神经网络模型,许多视觉相关的任务中表现出色,如图
2023-08-21 16:49:42473

卷积神经网络的基本原理 卷积神经网络发展 卷积神经网络三大特点

卷积神经网络的基本原理 卷积神经网络发展历程 卷积神经网络三大特点  卷积神经网络的基本原理 卷积神经网络(Convolutional Neural Networks,CNN)是深度学习领域
2023-08-21 16:49:39262

卷积神经网络三大特点

是一种基于图像处理的神经网络,它模仿人类视觉结构神经元组成,对图像进行处理和学习。图像处理,通常将图像看作是二维矩阵,即每个像素点都有其对应的坐标和像素值。卷积神经网络采用卷积操作实现图像的特征提取,具有“局部感知”的特点。 从直觉上理解,卷积
2023-08-21 16:49:32664

卷积神经网络应用领域

卷积神经网络应用领域 卷积神经网络(CNN)是一种广泛应用于图像、视频和自然语言处理领域的深度学习算法。它最初是用于图像识别领域,但目前已经扩展到了许多其他应用领域。本文将详细介绍卷积神经网络
2023-08-21 16:49:29501

卷积神经网络如何识别图像

卷积神经网络如何识别图像  卷积神经网络(Convolutional Neural Network, CNN)由于其出色的图像识别能力而成为深度学习的重要组成部分。CNN是一种深度神经网络,其结构为
2023-08-21 16:49:27484

卷积神经网络的工作原理 卷积神经网络通俗解释

。CNN可以帮助人们实现许多有趣的任务,如图像分类、物体检测、语音识别、自然语言处理和视频分析等。本文将详细介绍卷积神经网络的工作原理并用通俗易懂的语言解释。 1.概述 卷积神经网络是一个由神经元构成的深度神经网络,由输入层、隐藏层和输出层组成。卷积神经网络
2023-08-21 16:49:24636

卷积神经网络模型原理 卷积神经网络模型结构

卷积神经网络模型原理 卷积神经网络模型结构  卷积神经网络是一种深度学习神经网络,是图像、语音、文本和视频等方面的任务中最有效的神经网络之一。它的总体思想是使用在输入数据之上的一系列过滤器来捕捉
2023-08-21 16:41:58253

卷积神经网络模型有哪些?卷积神经网络包括哪几层内容?

卷积神经网络模型有哪些?卷积神经网络包括哪几层内容? 卷积神经网络(Convolutional Neural Networks,CNN)是深度学习领域中最广泛应用的模型之一,主要应用于图像、语音
2023-08-21 16:41:52374

卷积神经网络概述 卷积神经网络的特点 cnn卷积神经网络的优点

卷积神经网络概述 卷积神经网络的特点 cnn卷积神经网络的优点  卷积神经网络(Convolutional neural network,CNN)是一种基于深度学习技术的神经网络,由于其出色的性能
2023-08-21 16:41:48502

卷积神经网络的应用 卷积神经网络通常用来处理什么

卷积神经网络的应用 卷积神经网络通常用来处理什么 卷积神经网络(Convolutional Neural Network,简称CNN)是一种神经网络领域内广泛应用的神经网络模型。相较于传统的前馈
2023-08-21 16:41:451074

卷积神经网络详解 卷积神经网络包括哪几层及各层功能

卷积神经网络详解 卷积神经网络包括哪几层及各层功能 卷积神经网络(Convolutional Neural Networks, CNNs)是一个用于图像和语音识别的深度学习技术。它是一种专门为处理
2023-08-21 16:41:401244

卷积神经网络python代码

卷积神经网络python代码 ; 卷积神经网络(Convolutional Neural Network,简称CNN)是一种可以图像处理和语音识别等领域中很好地应用的神经网络。它的原理是通过不断
2023-08-21 16:41:35242

卷积神经网络结构

Learning)的应用,通过运用多层卷积神经网络结构,可以自动地进行特征提取和学习,进而实现图像分类、物体识别、目标检测、语音识别和自然语言翻译等任务。 卷积神经网络的结构包括:输入层、卷积层、激活函数、池化层和全连接层。 CNN,输入层通常是代表图像的矩阵或向量,而卷积层是卷积
2023-08-17 16:30:35240

卷积神经网络原理:卷积神经网络模型和卷积神经网络算法

一。其主要应用领域计算机视觉和自然语言处理,最初是由Yann LeCun等人在20世纪80年代末和90年代初提出的。随着近年来计算机硬件性能的提升和深度学习技术的发展,CNN很多领域取得了重大的进展和应用。 一、卷积神经网络模型 (一)卷积层(Convolutional Layer) 卷积神经网络
2023-08-17 16:30:30256

卷积神经网络通俗理解

卷积神经网络通俗理解 卷积神经网络,英文名为Convolutional Neural Network,成为了当前深度学习领域最重要的算法之一,也是很多图像和语音领域任务中最常用的深度学习模型之一
2023-08-17 16:30:251014

PyTorch教程8.1之深度卷积神经网络(AlexNet)

电子发烧友网站提供《PyTorch教程8.1之深度卷积神经网络(AlexNet).pdf》资料免费下载
2023-06-05 10:09:580

什么是神经网络?什么是卷积神经网络

介绍卷积神经网络之前,我们先回顾一下神经网络的基本知识。就目前而言,神经网络深度学习算法的核心,我们所熟知的很多深度学习算法的背后其实都是神经网络
2023-02-23 09:14:441224

卷积神经网络的发展及各模型的优缺点

CV领域,我们需要熟练掌握最基本的知识就是各种卷积神经网络CNN的模型架构,不管我们图像分类或者分割,目标检测,NLP等,我们都会用到基本的CNN网络架构。
2023-01-29 15:15:43869

卷积神经网络的应用分析

【源码】卷积神经网络Tensorflow文本分类的应用
2022-11-14 11:15:31299

卷积神经网络入门详解

本文中将对卷积神经网络的多个问题具体展开讲解。
2022-10-24 15:17:360

使用PyTorch深度解析卷积神经网络

卷积神经网络(CNN)是一种特殊类型的神经网络图像上表现特别出色。卷积神经网络由Yan LeCun1998年提出,可以识别给定输入图像存在的数字。
2022-09-21 10:12:50521

什么是卷积神经网络?完整的卷积神经网络(CNNS)解析

卷积神经网络(CNN)是一种特殊类型的神经网络图像上表现特别出色。卷积神经网络由Yan LeCun1998年提出,可以识别给定输入图像存在的数字。
2022-08-10 11:49:0617693

卷积神经网络基础知识科普

卷积神经网络是一种深度学习网络,主要用于识别图像和对其进行分类,以及识别图像的对象。
2022-05-13 10:26:471553

基于深度卷积神经网络目标检测研究

作为计算机视觉的基本视觉识别问题,目标检测在过去的几十年得到了广泛地研究。目标检测旨在给定图像中找到具有准确定位的特定对象,并为每个对象分配一个对应的标签。近年来,深度卷积神经网络DCNN
2022-02-11 08:51:111062

基于卷积神经网络的雷达目标检测方法综述

基于卷积神经网络的雷达目标检测方法综述
2021-06-23 14:43:0161

深度学习卷积神经网络层级分解综述

随着深度学习的不断发展,卷积神经网络(CNN)目标检测与图像分类受到研究者的广泛关注。CNN从 Lenet5网络发展到深度残差网络,其层数不断增加。基于神经网络深度”的含义,确保感受野相同
2021-05-19 16:11:005

基于剪枝与量化的卷积神经网络压缩算法

随着深度学习的发展,卷积神经网络作为其重要算法被广泛应用到计算机视觉、自然语言处理及语音处理等各个领域,并取得了比传统算法更为优秀的成绩。但是,卷积神经网络结构复杂,参数量和计算量巨大,使得很多算法
2021-05-17 15:44:056

卷积神经网络结构_卷积神经网络训练过程

输入层。输入层是整个神经网络的输入,处理图像的卷积神经网络,它一般代表了一张图片的像素矩阵。比如在图6-7,最左侧的三维矩阵的长和宽代表了图像的大小,而三维矩阵的深度代表了图像的色彩通道
2021-05-11 17:02:5413988

综述深度学习的卷积神经网络模型应用及发展

逐步提高。由于可以自动学习样本数据的特征表示,卷积神经网络已经广泛应用于图像分类、目标检测、语乂分割以及自然语言处理等领域。首先分析了典型卷积神经网络模型为提髙其性能増加网络深度以及宽度的模型结构,分析了采用注
2021-04-02 15:29:0420

基于深度神经网络的文本分类分析

卷积神经网络、循环神经网络、注意力机制等方法文本分类的应用和发展,分析多种典型分类方法的特点和性能,从准确率和运行时间方面对基础网络结构进行比较,表明深度神经网络较传统机器学习方法在用于文本分类时更具优
2021-03-10 16:56:5636

基于多孔卷积神经网络的图像深度估计模型

针对传统机器学习方法下单幅图像深度估计效果差、深度值获取不准确的问题,提出了一种基于多孔卷积神经网络(ACNN)的深度估计模型。首先,利用卷积神经网络(CNN)逐层提取原始图像的特征图;其次,利用
2020-09-29 16:20:005

卷积神经网络存在根本性的缺陷解析

经过一段漫长时期的沉寂之后,人工智能正在进入一个蓬勃发展的新时期,这主要得益于深度学习和人工神经网络近年来取得的长足发展。更准确地说,人们对深度学习产生的新的兴趣很大程度上要归功于卷积神经网络(CNNs)的成功,卷积神经网络是一种特别擅长处理视觉数据的神经网络结构。
2020-07-28 10:01:226911

使用深度卷积神经网络实现深度导向显著性检测算法

 针对目前基于深度卷积神经网络的显著性检测算法存在对复杂场景图像目标检测不完整、背景噪声多的问题,提出一种深度特征导向显著性检测算法。该算法是基于现有底层特征与深度卷积特征融合模型(ELD)的改进
2019-11-15 17:56:0710

浅析人工智能的卷积神经网络与图像处理

人工智能深度学习技术,有一个很重要的概念就是卷积神经网络 CNN(Convolutional Neural Networks)。
2019-11-02 11:23:433327

卷积神经网络人工智能的发展

AlexNet发表的2012年是具有里程碑意义的一年,自那以后,计算机视觉领域的所有突破几乎都来自深度神经网络。本文深入探讨了深度学习,尤其是非常擅长与理解图像的深度卷积神经网络
2019-02-05 09:48:003436

如何使用混合卷积神经网络和循环神经网络进行入侵检测模型的设计

网络流量的各统计值,进行特征编码、归一化等预处理工作;然后,通过深度卷积神经网络可变卷积核提取不同主机入侵流量之间空间相关特征;最后,将已经处理好的包含空间相关特征的数据时间上错开排列,利用深度循环神经网络挖掘入
2018-12-12 17:27:2019

卷积神经网络在车辆目标快速检测的应用

准确的车辆目标检测方法意义重大.YOLO目标检测框架的基础上,设计了一种卷积神经网络的车辆检测及其车型粗粒度识别方法.网络结构采用多层感知机卷积层,增加特征映射的非线性处理能力:移除原来模型的全连接层,利用
2017-12-22 16:22:120

基于卷积神经网络的图像标注模型

针对图像自动标注因人工选择特征而导致信息缺失的缺点,提出使用卷积神经网络对样本进行自主特征学习。为了适应图像自动标注的多标签学习的特点以及提高对低频词汇的召回率,首先改进卷积神经网络的损失函数
2017-12-07 14:30:504

基于深度卷积神经网络的航空器目标检测与识别

针对军用机场大尺寸卫星图像中航空器检测识别的具体应用场景,建立了一套实时目标检测识别框架,将深度卷积神经网络应用到大尺寸图像的航空器目标检测与识别任务。首先,将目标检测的任务看成空间上独立
2017-12-01 15:55:090

卷积神经网络CNN架构分析-LeNet

对于神经网络卷积有了粗浅的了解,关于CNN 卷积神经网络,需要总结深入的知识有很多:人工神经网络 ANN卷积神经网络CNN 卷积神经网络CNN-BP算法卷积神经网络CNN-caffe应用卷积神经网络CNN-LetNet分析 LetNet网络.
2017-11-16 13:28:012441

卷积神经网络CNN图解

之前在网上搜索了好多好多关于CNN的文章,由于网络上的文章很多断章取义或者描述不清晰,看了很多youtobe上面的教学视频还是没有弄懂,最后经过痛苦漫长的煎熬之后对于神经网络卷积有了粗浅的了解
2017-11-16 13:18:4055101

卷积神经网络检测脸部关键点的教程之卷积神经网络训练与数据扩充

上一次我们用了单隐层的神经网络,效果还可以改善,这一次就使用CNN。 卷积神经网络 上图演示了卷积操作 LeNet-5式的卷积神经网络,是计算机视觉领域近期取得的巨大突破的核心。卷积层和之前的全连接
2017-11-16 11:45:071897

【科普】卷积神经网络(CNN)基础介绍

,Hubel等人通过对猫视觉皮层细胞的研究,提出了感受野这个概念,到80年代,Fukushima感受野概念的基础之上提出了神经认知机的概念,可以看作是卷积神经网络的第一个实现网络神经认知机将一个视觉模式分解成许多子模式(特征)。
2017-11-16 01:00:0210130

已全部加载完成