静电除尘器的电源由控制箱、升压变压器和整流器组成。电源输出的电压高低对除尘效率也有很大影响。因此,静电除尘器运行电压需保持40一75kV乃至100kV以上。
静电除尘器结构
静电除尘器均采用钢结构外壳,结构轻巧,便于安装和检修,壳体一侧和灰斗均设有检修门,以便工人进人内部安装和检修,壳体的灰斗部分设有阻流板,顶部大梁下和电场两外侧均有挡风板,以防含尘气体绕过电场由入口直达出口而降低除尘效率。
壳体的每根柱脚上分别安装固定支座和活动支座,用以消除由于壳体受热产生的热应力。宜户外安装,壳体顶部有两层钢板组成的顶盖,与烟气接触的一层为内顶盖,起密封电场的作用,最上面的一层为外盖起防雨雪保护设备的作用。设备外侧均敷设保温层,保温层采用保温棉及彩色钢板保护层。
阴极(电晕极)及共振打装置
本系列电晕线采用节状芒刺线,它具有良好的放电效果和强度。第一电场电晕框架由四根吊杆悬于上部锥形绝缘电瓷套管上,不会因受热而引起的不规则变形影响其异极间距,还具有足够的机械强度和耐压性能。
阴极振打根据设备的大小,分别采用顶部或侧而绕臂回转振打机构,由于转动轴带电所以采用瓷轴绝缘,瓷轴通过万向接头与转动轴联接,采用针轮减速电机驱动,此振打机构,性能可靠,它避免了提升脱离式的振打机构容易卡死的现象。
阳极(沉淀极)及其振打装置
阳极采用钢板轧制成“ C ”型极板,它具有一定的强度,并能自由膨胀而不致产生较大热应力.又能克服粉尘的两次飞扬,阳极振打均采用侧面绕臂回转振打机构,采用针轮减速电机驱动,具有体积小、结构紧凑、安装维护方便、稳定可靠的优点。
静电除尘器保温装置
为防止表面冷凝结露而引起电击穿,阴极的电瓷转轴和吊挂框架的电瓷套管均设置保温管和绝缘子保温室,配置电加热器和热电偶对其实行温控,对于露点温度要求高的用户灰斗均采用电加热和蒸气加热,以防止结露而堵灰。
静电除尘器气流分布装置
为使含尘气体较均匀地进人电场,在除尘器进日嗽叭内按需设置一至三道气流分布板和导流板,导流可以根据气流分布模拟试验或现场试验结果设置吊挂,挂在多孔板的孔位上。实践证明这种形式有着良好的均布效果和不易堵孔等优点。
静电除尘器特点
静电除尘器与其他除尘设备相比,耗能少,除尘效率高,适用于除去烟气中0.01—50μm的粉尘,而且可用于烟气温度高、压力大的场合。实践表明,处理的烟气量越大,使用静电除尘器的投资和运行费用越经济。
宽间距卧式电除尘器技术
HHD型宽间距卧式电除尘器是引进和借鉴国外先进技术,结合中国各行业工业窑炉废气工况的特点,为适应日趋严格的废气排放要求和WTO市场准则研究开发的科研成果。该成果已广泛应用在冶金、电力、水泥等行业。
最佳宽间距及极板特别配置
使得电场场强、板电流分布更加均匀,驱进速度可提高 1.3倍,使捕集粉尘比电阻范围扩大到10 1 -10 14 Ω-cm,特别适用于硫化床锅炉、新型水泥干法回转窑、烧结机等废气的高比电阻粉尘回收,减缓或消除反电晕现象。
整体新型RS电晕线
最高长度可达15米,具有起晕电压低,电晕电流密度大,钢性强,永不破损,具有抗高温、抗热变能力,结合顶部振打方式清灰效果极佳。根据粉尘浓度大小配置相应的电晕线密度,从而可适应高粉尘浓度的收尘,最高允许入口浓度可达1000g/Nm 3。
电晕极顶部强力振打
根据清灰理论设计的顶部放电极强力振打,可采用机械和电磁两种任选方式。
阴阳两极自由悬吊
HHD电收尘器收尘系统和电晕极系统均采用三维悬吊结构,当废气温度过高时,收尘极和电晕极将按三维方向任意膨胀伸展,收尘极系统还特别设计了抗热变钢带约束结构,使得HHD电收尘器具有较高的抗热变能力,经商业运行表明,HHD电收尘器最高耐温可达390℃。
提高振打加速度
改善清灰效果 :收尘极系统清灰好坏直接影响收尘效率,大部分电收器在经过一段时间运行后都表现出效率下降情况,究其根源主要是收尘极板清灰效果差所致, HHD电收尘器利用最新撞击理论和实践结果,改传统扁钢撞击杆结构为整体型钢结构,又将收尘极的侧部振打锤结构删繁就简,使掉锤环节减少2/3,实验表明收尘极板面最小加速度从220G提高到356G。
占地面积小、重量轻
由于放电极系统采用顶部振打设计,且打破常规创造性地将每个电场采用非对称悬吊设计,并利用美国环境设备公司壳体计算机软件优化设计,使得在同样收尘总面积的情况,电收尘器总体长度减少3-5米,重量减轻15%。
高保证绝缘系统
为防止电除尘器的高压绝缘材料结露爬电,壳体采用蓄热双层充气屋顶设计,电加热采用最新PTC、PTS材料,绝缘套管底部采用双曲线反吹清扫设计,彻底杜绝了瓷套管结露爬电的易发故障,且维护、保养、更换极为便利。
匹配L-C高系统
高压控制可采用 DSC系统控制,上位机操作,低压控制采用PLC控制, 中文触摸屏操作。高压电源采用恒电流、高阻抗直流电源,匹配 HHD电收尘器本体。可产生高除尘效率、克服高比电阻、处理高浓度的优越功能。
提高除尘效率的措施与方法
由静电除尘器除尘过程来看,提高除尘效率可以从三个阶段着手。
第一阶段:从烟尘进入着手。在静电除尘里,粉尘的捕集跟粉尘的自身参数有关:如粉尘的比电阻、介电常数和密度、气体的流速、温度和湿度、电场的伏安特性以及收尘极的表面状态等等。在烟尘进入静电除尘之前先加一级除尘器,除去一些大颗粒、比重大的粉尘。如用旋风除尘,烟尘以高速经过旋风分离器,使含尘气体沿轴线螺旋向下旋转,利用离心力,除掉较粗颗粒的粉尘,有效控制了进入电场的初始含尘浓度。还可用水膜除尘,水雾用来控制粉尘的比电阻和介电常数,使烟气进入除尘器后有更强的荷电能力。但是要控制好除尘的水用量,防止结露。
第二阶段:从烟尘处理着手。通过挖掘静电除尘本身的除尘潜力,着重解决静电除尘器本身在除尘过程中的缺陷和问题,以有效的提高除尘效率。主要措施包括以下几种。
(1)改善不均匀的烟气流速分布,调整气流分布装置的技术参数。
(2)注重收尘系统的保温,保证保温层的材料和厚度。收尘器外部的保温层,会直接影响收尘气体的的温度,由于外部环境中含有一定量的水分,气体的温度一旦低于露点会产生结露现象。由于结露,粉尘粘附在集尘极和电晕极上,即使振打也不能有效地使其脱落。粘附的粉尘量达到一定程度时,就会阻止电晕极产生电晕,从而使收尘效率下降,电收尘器不能正常工作。另外,由于结露会造成收尘器的电极系统及壳体和贮斗产生腐蚀,从而缩短使用寿命。
(3)改善收尘系统的密封,保证收尘系统的漏风率低于3%。电收尘器通常为负压操作,因此在使用中必须注意密封,减少漏风以保证其工作性能。因为外部空气的进入,会带来以下三个不利的后果:①降低收尘器内气体的温度,有可能产生结露,尤其是在气温低的冬季,引起上述结露而产生的问题。②增大电场风速,使含尘气体在电场中的停留时间缩短,从而降低收尘效率。③如果是集灰斗和排灰口处漏风,则漏入的空气直接将已沉降下的粉尘吹起,扬入气流中,造成严重的二次扬尘,导致收尘效率降低。
(4)根据烟气的化学成分,调节电极板的材料,以便增加电极板的耐腐蚀强度,防止极板腐蚀,造成短路。
(5)调整电极的振打周期和振打力,以提高电晕功率和减少粉尘的再飞扬。
(6)增加电除尘器的容量或收尘面积,即增加一个电场,或将电除尘器的电场加高或扩宽。
(7)调整电源设备的控制方式和供电方式。高频(20~50kHz)高压开关电源的应用,为电除尘器的升级提效提供了一个新的技术途径。高频高压开关电源(SIR)的频率是常规变压/整流器(T/R)的400~1000倍。常规T/R电源,往往在火花放电严重的场合不能输出大的功率。在电场存在高比电阻粉尘而产生反电晕时,电场的火花将进一步增大,这将导致输出功率的急剧下降,有时甚至会下降到几十毫安,严重影响了收尘效率的提高。而SIR的情况则不同,因为其输出电压的频率是常规电源的500倍,当发生火花放电时其电压波动很小,可以产生几乎平滑的高压直流输出,因此SIR能够对电场提供更大的电流。通过多台电除尘器的运行情况表明,一般SIR的输出电流在常规T/R电源的2倍以上,所以电除尘器的效率会有显著提高。
第三阶段:从尾气处理着手。可以在静电除尘后也加入三级除尘,如采用布袋除尘,可以较为彻底的除去一些颗粒较小的粉尘,提高净化的效果,以达到无污染排放的目的。
评论
查看更多