电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电子发烧友网>嵌入式技术>CNN误差反传时旋转卷积核的简明分析

CNN误差反传时旋转卷积核的简明分析

收藏

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

相关推荐

基于3D数据卷积神经网络的物体识别

FusionNet的核心是全新的、应用于3D物体的三维卷积神经网络(Convolutional Neural Networks, CNN)。我们必须在多个方面调整传统的CNN以使其有效。
2020-01-16 16:36:003421

基于CNN的应用 卷积神经网络技术详解

南洋理工大学的综述论文《Recent Advances in Convolutional Neural Networks》对卷积神经网络的各个组件以及进展情况进行总结和解读,其中涉及到 CNN
2020-11-29 11:09:383098

基于CNN的点线联合优化估计相机姿态

提出了一种线检测CNN(VLSE),其利用了新颖的线段表示和基于Stacked Hourglass network的定制混合卷积块。
2022-12-01 09:42:51277

卷积神经网络(CNN)的工作原理 神经网络的训练过程

前文《卷积神经网络简介:什么是机器学习?》中,我们比较了在微控制器中运行经典线性规划程序与运行CNN的区别,并展示了CNN的优势。我们还探讨了CIFAR网络,该网络可以对图像中的猫、房子或自行车等对象进行分类,还可以执行简单的语音识别。本文重点解释如何训练这些神经网络以解决实际问题。
2023-09-05 10:19:43865

使用Python卷积神经网络(CNN)进行图像识别的基本步骤

Python 卷积神经网络(CNN)在图像识别领域具有广泛的应用。通过使用卷积神经网络,我们可以让计算机从图像中学习特征,从而实现对图像的分类、识别和分析等任务。以下是使用 Python 卷积神经网络进行图像识别的基本步骤。
2023-11-20 11:20:331467

CNN卷积

`前言卷积神经网络在深度学习领域是一个很重要的概念,是入门深度学习必须搞懂的内容。CNN图像识别的关键——卷积当我们给定一个"X"的图案,计算机怎么识别这个图案
2018-10-17 10:15:50

卷积神经网络CNN介绍

【深度学习】卷积神经网络CNN
2020-06-14 18:55:37

卷积神经网络原理及发展过程

Top100论文导读:深入理解卷积神经网络CNN(Part Ⅰ)
2019-09-06 17:25:54

卷积神经网络如何使用

卷积神经网络(CNN)究竟是什么,鉴于神经网络在工程上经历了曲折的历史,您为什么还会在意它呢? 对于这些非常中肯的问题,我们似乎可以给出相对简明的答案。
2019-07-17 07:21:50

卷积神经网络模型发展及应用

分析了目前的特殊模型结构,最后总结并讨论了卷积神经网络在相关领域的应用,并对未来的研究方向进行展望。卷积神经网络(convolutional neural network,CNN) 在计算机视觉[1-
2022-08-02 10:39:39

卷积神经网络的整体网络结构和发展过程

Top100论文导读:深入理解卷积神经网络CNN(Part Ⅱ)
2019-08-22 14:20:39

卷积神经网络简介:什么是机器学习?

抽象人工智能 (AI) 的世界正在迅速发展,人工智能越来越多地支持以前无法实现或非常难以实现的应用程序。本系列文章解释了卷积神经网络 (CNN) 及其在 AI 系统中机器学习中的重要性。CNN 是从
2023-02-23 20:11:10

正在加载...