图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。它特别适用于目标和背景占据不同灰度级范围的图像。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。
图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区域,各个区域内部具有一致的属性,而相邻区域不具有这种一致属性。这样的划分可以通过从灰度级出发选取一个或多个阈值来实现。
基本原理
基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。
常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。
设原始图像为f(x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为:
若取:b0=0(黑),b1=1(白),即为我们通常所说的图像二值化。
图像分割的意义:
在一幅图像中,人们常常只对其中的部分目标感兴趣,这些目标通常占据一定的区域,并且在某些特性(如灰度、轮廓、颜色和纹理等)上和临近的图像有差别。这些特性差别可能非常明显,也可能很细微,以至肉眼察觉不出来。随着计算机图像处理技术的发展,使得人们可以通过计算机来获取和处理图像信息。图像识别的基础是图像分割,其作用是把反映物体真实情况的、占据不同区域的、具有不同特性的目标区分开来,并形成数字特征。图像分割是图像识别和图像理解的基本前提步骤,图像分割质量的好坏直接影响后续图像处理的效果,甚至决定其成败,因此,图像分割的作用是至关重要的。
函数原型
1、opencv官方介绍:opencv官方grabcut介绍
2、网上童鞋翻译解释:学习OpenCV——学习grabcut算法
3、大致内容如下:
函数原型:
void grabCut(InputArray img, InputOutputArray mask, Rect rect,
InputOutputArray bgdModel, InputOutputArray fgdModel,
int iterCount, int mode=GC_EVAL )
img:待分割的源图像,必须是8位3通道(CV_8UC3)图像,在处理的过程中不会被修改;
mask:掩码图像,大小和原图像一致。可以有如下几种取值:
GC_BGD(=0),背景;
GC_FGD(=1),前景;
GC_PR_BGD(=2),可能的背景;
GC_PR_FGD(=3),可能的前景。
rect:用于限定需要进行分割的图像范围,只有该矩形窗口内的图像部分才被处理;
bgdModel:背景模型,如果为null,函数内部会自动创建一个bgdModel;
fgdModel:前景模型,如果为null,函数内部会自动创建一个fgdModel;
iterCount:迭代次数,必须大于0;
mode:用于指示grabCut函数进行什么操作。可以有如下几种选择:
GC_INIT_WITH_RECT(=0),用矩形窗初始化GrabCut;
GC_INIT_WITH_MASK(=1),用掩码图像初始化GrabCut;
GC_EVAL(=2),执行分割。
基本原理:
首先用户在图片上画一个方框,grabCut默认方框内部为前景,设置掩码为2,方框外部都是背景,设置掩码为0。然后根据算法,
将方框内部检查出来是背景的位置,掩码由2改为0。最后,经过算法处理,方框中掩码依然为2的,就是检查出来的前景,其他为背景。
实例讲解1
这些例子都主要是根据opencv自带的例子:opencvsamplescppgrabcut.cpp 简化修改而来。
源代码
代码如下:
#include “opencv2/highgui/highgui.hpp”
#include “opencv2/imgproc/imgproc.hpp”
#include 《iostream》
using namespace std;
using namespace cv;
string filename;
Mat image;
string winName = “show”;
Rect rect;
Mat mask;
const Scalar GREEN = Scalar(0,255,0);
Mat bgdModel, fgdModel;
void setRectInMask(){
rect.x = 110;
rect.y = 220;
rect.width = 100;
rect.height = 100;
}
static void getBinMask( const Mat& comMask, Mat& binMask ){
binMask.create( comMask.size(), CV_8UC1 );
binMask = comMask & 1;
}
int main(int argc, char* argv[]){
Mat binMask, res;
filename = argv[1];
image = imread( filename, 1 );
mask.create(image.size(), CV_8UC1);
mask.setTo(GC_BGD);
setRectInMask();
(mask(rect)).setTo(Scalar(GC_PR_FGD));
rectangle(image, Point(rect.x, rect.y), Point(rect.x + rect.width, rect.y + rect.height ), GREEN, 2);
imshow(winName, image);
image = imread( filename, 1 );
grabCut(image, mask, rect, bgdModel, fgdModel, 1, GC_INIT_WITH_RECT);
getBinMask(mask, binMask);
image.copyTo(res, binMask);
imshow(“result”, res);
waitKey(0);
return 0;
}.
代码讲解
1、首先是装载需要处理的源图片。
filename = argv[1];
image = imread( filename, 1 );
2、设置掩码,首先创建了一个和源图片一样大小的掩码空间。接着将整个掩码空间设置为背景:GC_BGD。接着创建了一个rect,对应左上角坐标为:
(110,220),长宽都为100。接着在掩码空间mask对应左边位置的掩码设置为GC_PR_FGD(疑似为前景)。这个rect就是需要分离前景背景的空间。同时
在源图像上,rect对应的需要被处理位置画出绿色方框框选。接着将画了绿色方框之后的源图片显示出来。
mask.create(image.size(), CV_8UC1);
mask.setTo(GC_BGD);
setRectInMask();
(mask(rect)).setTo(Scalar(GC_PR_FGD));
rectangle(image, Point(rect.x, rect.y), Point(rect.x + rect.width, rect.y + rect.height ), GREEN, 2);
imshow(winName, image);
3、之前的源图像被画了绿色方框,所以需要重新装载一遍源图像。接着使用函数grabCut,根据传入的相关参数,进行前景背景分离操作。最后在生成的
结果保存在mask中,背景被置为0,前景被置为1。接着将mask结果筛选到binMask中。最后使用image.copyTo(res, binMask);将原图像根据binMask作为掩码,
将筛选出来的前景复制到目标图像res中。并将目标图像显示出来。
效果演示
图像融合(去裂缝处理)
从下图可以看出,两图的拼接并不自然,原因就在于拼接图的交界处,两图因为光照色泽的原因使得两图交界处的过渡很糟糕,所以需要特定的处理解决这种不自然。这里的处理思路是加权融合,在重叠部分由前一幅图像慢慢过渡到第二幅图像,即将图像的重叠区域的像素值按一定的权值相加合成新的图像。
//优化两图的连接处,使得拼接自然
void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
{
int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界
double processWidth = img1.cols - start;//重叠区域的宽度
int rows = dst.rows;
int cols = img1.cols; //注意,是列数*通道数
double alpha = 1;//img1中像素的权重
for (int i = 0; i 《 rows; i++)
{
uchar* p = img1.ptr《uchar》(i); //获取第i行的首地址
uchar* t = trans.ptr《uchar》(i);
uchar* d = dst.ptr《uchar》(i);
for (int j = start; j 《 cols; j++)
{
//如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
{
alpha = 1;
}
else
{
//img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好
alpha = (processWidth - (j - start)) / processWidth;
}
d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);
}
}
验证拼接效果
最后给出完整的SURF算法实现的拼接代码。
#include “highgui/highgui.hpp”
#include “opencv2/nonfree/nonfree.hpp”
#include “opencv2/legacy/legacy.hpp”
#include 《iostream》
using namespace cv;
using namespace std;
void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst);
typedef struct
{
Point2f left_top;
Point2f left_bottom;
Point2f right_top;
Point2f right_bottom;
}four_corners_t;
four_corners_t corners;
void CalcCorners(const Mat& H, const Mat& src)
{
double v2[] = { 0, 0, 1 };//左上角
double v1[3];//变换后的坐标值
Mat V2 = Mat(3, 1, CV_64FC1, v2); //列向量
Mat V1 = Mat(3, 1, CV_64FC1, v1); //列向量
V1 = H * V2;
//左上角(0,0,1)
cout 《《 “V2: ” 《《 V2 《《 endl;
cout 《《 “V1: ” 《《 V1 《《 endl;
corners.left_top.x = v1[0] / v1[2];
corners.left_top.y = v1[1] / v1[2];
//左下角(0,src.rows,1)
v2[0] = 0;
v2[1] = src.rows;
v2[2] = 1;
V2 = Mat(3, 1, CV_64FC1, v2); //列向量
V1 = Mat(3, 1, CV_64FC1, v1); //列向量
V1 = H * V2;
corners.left_bottom.x = v1[0] / v1[2];
corners.left_bottom.y = v1[1] / v1[2];
//右上角(src.cols,0,1)
v2[0] = src.cols;
v2[1] = 0;
v2[2] = 1;
V2 = Mat(3, 1, CV_64FC1, v2); //列向量
V1 = Mat(3, 1, CV_64FC1, v1); //列向量
V1 = H * V2;
corners.right_top.x = v1[0] / v1[2];
corners.right_top.y = v1[1] / v1[2];
//右下角(src.cols,src.rows,1)
v2[0] = src.cols;
v2[1] = src.rows;
v2[2] = 1;
V2 = Mat(3, 1, CV_64FC1, v2); //列向量
V1 = Mat(3, 1, CV_64FC1, v1); //列向量
V1 = H * V2;
corners.right_bottom.x = v1[0] / v1[2];
corners.right_bottom.y = v1[1] / v1[2];
}
int main(int argc, char *argv[])
{
Mat image01 = imread(“g5.jpg”, 1); //右图
Mat image02 = imread(“g4.jpg”, 1); //左图
imshow(“p2”, image01);
imshow(“p1”, image02);
//灰度图转换
Mat image1, image2;
cvtColor(image01, image1, CV_RGB2GRAY);
cvtColor(image02, image2, CV_RGB2GRAY);
//提取特征点
SurfFeatureDetector Detector(2000);
vector《KeyPoint》 keyPoint1, keyPoint2;
Detector.detect(image1, keyPoint1);
Detector.detect(image2, keyPoint2);
//特征点描述,为下边的特征点匹配做准备
SurfDescriptorExtractor Descriptor;
Mat imageDesc1, imageDesc2;
Descriptor.compute(image1, keyPoint1, imageDesc1);
Descriptor.compute(image2, keyPoint2, imageDesc2);
FlannBasedMatcher matcher;
vector《vector《DMatch》 》 matchePoints;
vector《DMatch》 GoodMatchePoints;
vector《Mat》 train_desc(1, imageDesc1);
matcher.add(train_desc);
matcher.train();
matcher.knnMatch(imageDesc2, matchePoints, 2);
cout 《《 “total match points: ” 《《 matchePoints.size() 《《 endl;
// Lowe‘s algorithm,获取优秀匹配点
for (int i = 0; i 《 matchePoints.size(); i++)
{
if (matchePoints[i][0].distance 《 0.4 * matchePoints[i][1].distance)
{
GoodMatchePoints.push_back(matchePoints[i][0]);
}
}
Mat first_match;
drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
imshow(“first_match ”, first_match);
vector《Point2f》 imagePoints1, imagePoints2;
for (int i = 0; i《GoodMatchePoints.size(); i++)
{
imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);
imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt);
}
//获取图像1到图像2的投影映射矩阵 尺寸为3*3
Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
////也可以使用getPerspectiveTransform方法获得透视变换矩阵,不过要求只能有4个点,效果稍差
//Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2);
cout 《《 “变换矩阵为: ” 《《 homo 《《 endl 《《 endl; //输出映射矩阵
//计算配准图的四个顶点坐标
CalcCorners(homo, image01);
cout 《《 “left_top:” 《《 corners.left_top 《《 endl;
cout 《《 “left_bottom:” 《《 corners.left_bottom 《《 endl;
cout 《《 “right_top:” 《《 corners.right_top 《《 endl;
cout 《《 “right_bottom:” 《《 corners.right_bottom 《《 endl;
//图像配准
Mat imageTransform1, imageTransform2;
warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows));
//warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
imshow(“直接经过透视矩阵变换”, imageTransform1);
imwrite(“trans1.jpg”, imageTransform1);
//创建拼接后的图,需提前计算图的大小
int dst_width = imageTransform1.cols; //取最右点的长度为拼接图的长度
int dst_height = image02.rows;
Mat dst(dst_height, dst_width, CV_8UC3);
dst.setTo(0);
imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows))); image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));
imshow(“b_dst”, dst);
OptimizeSeam(image02, imageTransform1, dst);
imshow(“dst”, dst);
imwrite(“dst.jpg”, dst);
waitKey();
return 0;
}
//优化两图的连接处,使得拼接自然
void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
{
int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界
double processWidth = img1.cols - start;//重叠区域的宽度
int rows = dst.rows;
int cols = img1.cols; //注意,是列数*通道数
double alpha = 1;//img1中像素的权重
for (int i = 0; i 《 rows; i++)
{
uchar* p = img1.ptr《uchar》(i); //获取第i行的首地址
uchar* t = trans.ptr《uchar》(i);
uchar* d = dst.ptr《uchar》(i);
for (int j = start; j 《 cols; j++)
{
//如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
{
alpha = 1;
}
else
{
//img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好
alpha = (processWidth - (j - start)) / processWidth;
}
d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);
}
}
}
}
评论
查看更多