在Linux中,先后出现了音频设备的两种框架OSS和ALSA,本节将在介绍数字音频设备及音频设备硬件接口的基础上,展现OSS和ALSA驱动的结构。
17.1~17.2节讲解了音频设备及PCM、IIS和AC97硬件接口。
17.3节阐述了Linux OSS音频设备驱动的组成、mixer接口、dsp接口及用户空间编程方法。
17.4节阐述了Linux ALSA音频设备驱动的组成、card和组件管理、PCM设备、control接口、AC97 API及用户空间编程方法。
17.5节以S3C2410通过IIS接口外接UDA1341编解码器的实例讲解了OSS驱动。
17.6节以PXA255通过AC97接口外接AC97 编解码器的实例讲解了ALSA驱动。
17.1数字音频设备
目前,手机、PDA、MP3等许多嵌入式设备中包含了数字音频设备,一个典型的数字音频系统的电路组成如图17.1所示。图17.1中的嵌入式微控制器 /DSP中集成了PCM、IIS或AC97音频接口,通过这些接口连接外部的音频编解码器即可实现声音的AD和DA转换,图中的功放完成模拟信号的放大功能。
图17.1 典型的数字音频系统电路
音频编解码器是数字音频系统的核心,衡量它的指标主要有:
采样频率
采样的过程就是将通常的模拟音频信号的电信号转换成二进制码0和1的过程,这些0和1便构成了数字音频文件。如图17.2中的正弦曲线代表原始音频曲线,方格代表采样后得到的结果,二者越吻合说明采样结果越好。
采样频率是每秒钟的采样次数,我们常说的 44.1kHz 采样频率就是每秒钟采样44100 次。理论上采样频率越高,转换精度越高,目前主流的采样频率是48kHz。
量化精度
量化精度是指对采样数据分析的精度,比如24bit量化精度就是是将标准电平信号按照2的24次方进行分析,也就是说将图17.2中的纵坐标等分为224等分。量化精度越高,声音就越逼真。
图17.2 数字音频采样
17.2音频设备硬件接口
17.2.1 PCM接口
针对不同的数字音频子系统,出现了几种微处理器或DSP与音频器件间用于数字转换的接口。
最简单的音频接口是PCM(脉冲编码调制)接口,该接口由时钟脉冲(BCLK)、帧同步信号(FS)及接收数据(DR)和发送数据(DX)组成。在FS信号的上升沿,数据传输从MSB(Most Significant Bit)字开始,FS频率等于采样率。FS信号之后开始数据字的传输,单个的数据位按顺序进行传输,1个时钟周期传输1个数据字。发送MSB时,信号的等级首先降到最低,以避免在不同终端的接口使用不同的数据方案时造成MSB的丢失。
PCM接口很容易实现,原则上能够支持任何数据方案和任何采样率,但需要每个音频通道获得一个独立的数据队列。
17.2.2 IIS接口
IIS 接口(Inter-IC Sound)在20世纪80年代首先被飞利浦用于消费音频,并在一个称为LRCLK(Left/Right CLOCK)的信号机制中经过多路转换,将两路音频信号变成单一的数据队列。当LRCLK为高时,左声道数据被传输;LRCLK为低时,右声道数据被传输。与PCM相比,IIS更适合于立体声系统。对于多通道系统,在同样的BCLK和LRCLK条件下,并行执行几个数据队列也是可能的。
17.2.3 AC97接口
AC‘97(Audio Codec 1997)是以Intel为首的五个PC厂商Intel、Creative Labs、NS、Analog Device与Yamaha共同提出的规格标准。与PCM和IIS不同,AC’97不只是一种数据格式,用于音频编码的内部架构规格,它还具有控制功能。 AC‘97采用AC-Link与外部的编解码器相连,AC-Link接口包括位时钟(BITCLK)、同步信号校正(SYNC)和从编码到处理器及从处理器中解码(SDATDIN与SDATAOUT)的数据队列。AC’97数据帧以SYNC脉冲开始,包括12个20位时间段(时间段为标准中定义的不同的目的服务)及16位“tag”段,共计256个数据序列。例如,时间段“1”和“2”用于访问编码的控制寄存器,而时间段“3”和“4”分别负载左、右两个音频通道。“tag”段表示其他段中哪一个包含有效数据。把帧分成时间段使传输控制信号和音频数据仅通过4根线到达9个音频通道或转换成其他数据流成为可能。与具有分离控制接口的IIS方案相比,AC‘97明显减少了整体管脚数。一般来说,AC’97 编解码器采用TQFP48封装,如图17.3所示。
图17.3 AC97 Codec芯片
PCM、IIS和AC97各有其优点和应用范围,例如在CD、MD、MP3随身听多采用IIS接口,移动电话会采用PCM接口,具有音频功能的PDA则多使用和PC一样的AC‘97编码格式。
17.3 Linux OSS音频设备驱动
17.3.1 OSS驱动的组成
OSS标准中有2个最基本的音频设备:mixer(混音器)和DSP(数字信号处理器)。
在声卡的硬件电路中,mixer是一个很重要的组成部分,它的作用是将多个信号组合或者叠加在一起,对于不同的声卡来说,其混音器的作用可能各不相同。OSS驱动中,/dev/mixer设备文件是应用程序对mixer进行操作的软件接口。
混音器电路通常由两个部分组成:输入混音器(input mixer)和输出混音器(output mixer)。输入混音器负责从多个不同的信号源接收模拟信号,这些信号源有时也被称为混音通道或者混音设备。模拟信号通过增益控制器和由软件控制的音量调节器后,在不同的混音通道中进行级别(level)调制,然后被送到输入混音器中进行声音的合成。混音器上的电子开关可以控制哪些通道中有信号与混音器相连,有些声卡只允许连接一个混音通道作为录音的音源,而有些声卡则允许对混音通道做任意的连接。经过输入混音器处理后的信号仍然为模拟信号,它们将被送到A/D转换器进行数字化处理。
输出混音器的工作原理与输入混音器类似,同样也有多个信号源与混音器相连,并且事先都经过了增益调节。当输出混音器对所有的模拟信号进行了混合之后,通常还会有一个总控增益调节器来控制输出声音的大小,此外还有一些音调控制器来调节输出声音的音调。经过输出混音器处理后的信号也是模拟信号,它们最终会被送给喇叭或者其它的模拟输出设备。对混音器的编程包括如何设置增益控制器的级别,以及怎样在不同的音源间进行切换,这些操作通常来讲是不连续的,而且不会像录音或者放音那样需要占用大量的计算机资源。由于混音器的操作不符合典型的读/写操作模式,因此除了 open()和close()两个系统调用之外,大部分的操作都是通过ioctl()系统调用来完成的。与/dev/dsp不同,/dev/mixer允许多个应用程序同时访问,并且混音器的设置值会一直保持到对应的设备文件被关闭为止。
DSP也称为编解码器,实现录音(录音)和放音(播放),其对应的设备文件是/dev/dsp或/dev/sound/dsp。OSS声卡驱动程序提供的 /dev/dsp是用于数字采样和数字录音的设备文件,向该设备写数据即意味着激活声卡上的D/A转换器进行放音,而向该设备读数据则意味着激活声卡上的 A/D转换器进行录音。
在从DSP设备读取数据时,从声卡输入的模拟信号经过A/D转换器变成数字采样后的样本,保存在声卡驱动程序的内核缓冲区中,当应用程序通过 read()系统调用从声卡读取数据时,保存在内核缓冲区中的数字采样结果将被复制到应用程序所指定的用户缓冲区中。需要指出的是,声卡采样频率是由内核中的驱动程序所决定的,而不取决于应用程序从声卡读取数据的速度。如果应用程序读取数据的速度过慢,以致低于声卡的采样频率,那么多余的数据将会被丢弃(即overflow);如果读取数据的速度过快,以致高于声卡的采样频率,那么声卡驱动程序将会阻塞那些请求数据的应用程序,直到新的数据到来为止。
在向DSP设备写入数据时,数字信号会经过D/A转换器变成模拟信号,然后产生出声音。应用程序写入数据的速度应该至少等于声卡的采样频率,过慢会产生声音暂停或者停顿的现象(即underflow)。如果用户写入过快的话,它会被内核中的声卡驱动程序阻塞,直到硬件有能力处理新的数据为止。
与其它设备有所不同,声卡通常不需要支持非阻塞(non-blocking)的I/O操作。即便内核OSS驱动提供了非阻塞的I/O支持,用户空间也不宜采用。
无论是从声卡读取数据,或是向声卡写入数据,事实上都具有特定的格式(format),如无符号8位、单声道、8KHz采样率,如果默认值无法达到要求,可以通过ioctl()系统调用来改变它们。通常说来,在应用程序中打开设备文件/dev/dsp之后,接下去就应该为其设置恰当的格式,然后才能从声卡读取或者写入数据。
17.3.2 mixer接口
int register_sound_mixer(struct file_operations *fops, int dev);
上述函数用于注册1个混音器,第1个参数fops即是文件操作接口,第2个参数dev是设备编号,如果填入-1,则系统自动分配1个设备编号。mixer 是 1个典型的字符设备,因此编码的主要工作是实现file_operations中的open()、ioctl()等函数。
mixer接口file_operations中的最重要函数是ioctl(),它实现混音器的不同IO控制命令,代码清单17.1给出了1个ioctl()的范例。
代码清单17.1 mixer()接口ioctl()函数范例
1 static int mixdev_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2 {
3 。。。
4 switch (cmd)
5 {
6 case SOUND_MIXER_READ_MIC:
7 。。。
8 case SOUND_MIXER_WRITE_MIC:
9 。。。
10 case SOUND_MIXER_WRITE_RECSRC:
11 。。。
12 case SOUND_MIXER_WRITE_MUTE:
13 。。。
14 }
15 //其它命令
16 return mixer_ioctl(codec, cmd, arg);
17 }
17.3.3 DSP接口
int register_sound_dsp(struct file_operations *fops, int dev);
上述函数与register_sound_mixer()类似,它用于注册1个dsp设备,第1个参数fops即是文件操作接口,第2个参数dev是设备编号,如果填入-1,则系统自动分配1个设备编号。dsp也是1个典型的字符设备,因此编码的主要工作是实现file_operations中的 read()、write()、ioctl()等函数。
dsp接口file_operations中的read()和write()函数非常重要,read()函数从音频控制器中获取录音数据到缓冲区并拷贝到用户空间,write()函数从用户空间拷贝音频数据到内核空间缓冲区并最终发送到音频控制器。
dsp接口file_operations中的ioctl()函数处理对采样率、量化精度、DMA缓冲区块大小等参数设置IO控制命令的处理。
在数据从缓冲区拷贝到音频控制器的过程中,通常会使用DMA,DMA对声卡而言非常重要。例如,在放音时,驱动设置完DMA控制器的源数据地址(内存中 DMA缓冲区)、目的地址(音频控制器FIFO)和DMA的数据长度,DMA控制器会自动发送缓冲区的数据填充FIFO,直到发送完相应的数据长度后才中断一次。
在OSS驱动中,建立存放音频数据的环形缓冲区(ring buffer)通常是值得推荐的方法。此外,在OSS驱动中,一般会将1个较大的DMA缓冲区分成若干个大小相同的块(这些块也被称为“段”,即 fragment),驱动程序使用DMA每次在声音缓冲区和声卡之间搬移一个fragment。在用户空间,可以使用ioctl()系统调用来调整块的大小和个数。
除了read()、write()和ioctl()外,dsp接口的poll()函数通常也需要被实现,以向用户反馈目前能否读写DMA缓冲区。
在OSS驱动初始化过程中,会调用register_sound_dsp()和register_sound_mixer()注册dsp和mixer设备;在模块卸载的时候,会调用如代码清单17.2。
代码清单
17.2 OSS驱动初始化注册dsp和mixer设备
1 static int xxx_init(void)
2 {
3 struct xxx_state *s = &xxx_state;
4 。。。
5 //注册dsp设备
6 if ((audio_dev_dsp = register_sound_dsp(&xxx_audio_fops, - 1)) 《 0)
7 goto err_dev1;
8 //设备mixer设备
9 if ((audio_dev_mixer = register_sound_mixer(&xxx_mixer_fops, - 1)) 《 0)
10 goto err_dev2;
11 。。。
12 }
13
14 void __exit xxx_exit(void)
15 {
16 //注销dsp和mixer设备接口
17 unregister_sound_dsp(audio_dev_dsp);
18 unregister_sound_mixer(audio_dev_mixer);
19 。。。
20 }
根据17.3.2和17.3.3节的分析,可以画出一个Linux OSS驱动结构的简图,如图17.4所示。
图17.4 Linux OSS驱动结构
17.3.4 OSS用户空间编程
1、DSP编程
对OSS驱动声卡的编程使用Linux文件接口函数,如图17.5,DSP接口的操作一般包括如下几个步骤:
① 打开设备文件/dev/dsp。
采用何种模式对声卡进行操作也必须在打开设备时指定,对于不支持全双工的声卡来说,应该使用只读或者只写的方式打开,只有那些支持全双工的声卡,才能以读写的方式打开,这还依赖于驱动程序的具体实现。Linux允许应用程序多次打开或者关闭与声卡对应的设备文件,从而能够很方便地在放音状态和录音状态之间进行切换。
② 如果有需要,设置缓冲区大小。
运行在Linux内核中的声卡驱动程序专门维护了一个缓冲区,其大小会影响到放音和录音时的效果,使用ioctl()系统调用可以对它的尺寸进行恰当的设置。调节驱动程序中缓冲区大小的操作不是必须的,如果没有特殊的要求,一般采用默认的缓冲区大小也就可以了。如果想设置缓冲区的大小,则通常应紧跟在设备文件打开之后,这是因为对声卡的其它操作有可能会导致驱动程序无法再修改其缓冲区的大小。
③ 设置声道(channel)数量。
根据硬件设备和驱动程序的具体情况,可以设置为单声道或者立体声。
④ 设置采样格式和采样频率
采样格式包括AFMT_U8(无符号8位)、AFMT_S8(有符号8位)、AFMT_U16_LE(小端模式,无符号16位)、 AFMT_U16_BE(大端模式,无符号16位)、AFMT_MPEG、AFMT_AC3等。使用SNDCTL_DSP_SETFMT IO控制命令可以设置采样格式。
对于大多数声卡来说,其支持的采样频率范围一般为5kHz到44.1kHz或者48kHz,但并不意味着该范围内的所有连续频率都会被硬件支持,在 Linux下进行音频编程时最常用到的几种采样频率是11025Hz、16000Hz、22050Hz、32000Hz 和44100Hz。使用SNDCTL_DSP_SPEED IO控制命令可以设置采样频率。
⑤ 读写/dev/dsp实现播放或录音。
图17.5 OSS dsp接口用户空间操作流程
代码清单17.3的程序实现了利用/dev/dsp接口进行声音录制和播放的过程,它的功能是先录制几秒钟音频数据,将其存放在内存缓冲区中,然后再进行放音。
代码清单17.3 OSS DSP接口应用编程范例
1 #include
2 #include
3 #include
4 #include
5 #include
6 #include
7 #include
8 #define LENGTH 3 /* 存储秒数 */
9 #define RATE 8000 /* 采样频率 */
10 #define SIZE 8 /* 量化位数 */
11 #define CHANNELS 1 /* 声道数目 */
12 /* 用于保存数字音频数据的内存缓冲区 */
13 unsigned char buf[LENGTH *RATE * SIZE * CHANNELS / 8];
14 int main()
15 {
16 int fd; /* 声音设备的文件描述符 */
17 int arg; /* 用于ioctl调用的参数 */
18 int status; /* 系统调用的返回值 */
19 /* 打开声音设备 */
20 fd = open(“/dev/dsp”, O_RDWR);
21 if (fd 《 0)
22 {
23 perror(“open of /dev/dsp failed”);
24 exit(1);
25 }
26 /* 设置采样时的量化位数 */
27 arg = SIZE;
28 status = ioctl(fd, SOUND_PCM_WRITE_BITS, &arg);
29 if (status == - 1)
30 perror(“SOUND_PCM_WRITE_BITS ioctl failed”);
31 if (arg != SIZE)
32 perror(“unable to set sample size”);
33 /* 设置采样时的通道数目 */
34 arg = CHANNELS;
35 status = ioctl(fd, SOUND_PCM_WRITE_CHANNELS, &arg);
36 if (status == - 1)
37 perror(“SOUND_PCM_WRITE_CHANNELS ioctl failed”);
38 if (arg != CHANNELS)
39 perror(“unable to set number of channels”);
40 /* 设置采样率 */
41 arg = RATE;
42 status = ioctl(fd, SOUND_PCM_WRITE_RATE, &arg);
43 if (status == - 1)
44 perror(“SOUND_PCM_WRITE_WRITE ioctl failed”);
45 /* 循环,直到按下Control-C */
46 while (1)
47 {
48 printf(“Say something:/n”);
49 status = read(fd, buf, sizeof(buf)); /* 录音 */
50 if (status != sizeof(buf))
51 perror(“read wrong number of bytes”);
52 printf(“You said:/n”);
53 status = write(fd, buf, sizeof(buf)); /* 放音 */
54 if (status != sizeof(buf))
55 perror(“wrote wrong number of bytes”);
56 /* 在继续录音前等待放音结束 */
57 status = ioctl(fd, SOUND_PCM_SYNC, 0);
58 if (status == - 1)
59 perror(“SOUND_PCM_SYNC ioctl failed”);
60 }
61 }
2、mixer编程
声卡上的混音器由多个混音通道组成,它们可以通过驱动程序提供的设备文件/dev/mixer进行编程。对混音器的操作一般都通过ioctl()系统调用来完成,所有控制命令都以SOUND_MIXER或者MIXER开头,表17.1列出了常用的混音器控制命令。
表17.1 混音器常用命令
命 令 作 用
SOUND_MIXER_VOLUME 主音量调节
SOUND_MIXER_BASS 低音控制
SOUND_MIXER_TREBLE 高音控制
SOUND_MIXER_SYNTH FM合成器
SOUND_MIXER_PCM 主D/A转换器
SOUND_MIXER_SPEAKER PC喇叭
SOUND_MIXER_LINE 音频线输入
SOUND_MIXER_MIC 麦克风输入
SOUND_MIXER_CD CD输入
SOUND_MIXER_IMIX 放音音量
SOUND_MIXER_ALTPCM 从D/A 转换器
SOUND_MIXER_RECLEV 录音音量
SOUND_MIXER_IGAIN 输入增益
SOUND_MIXER_OGAIN 输出增益
SOUND_MIXER_LINE1 声卡的第1输入
SOUND_MIXER_LINE2 声卡的第2输入
SOUND_MIXER_LINE3 声卡的第3输入
对声卡的输入增益和输出增益进行调节是混音器的一个主要作用,目前大部分声卡采用的是8位或者16位的增益控制器,声卡驱动程序会将它们变换成百分比的形式,也就是说无论是输入增益还是输出增益,其取值范围都是从0到100。
? SOUND_MIXER_READ宏
在进行混音器编程时,可以使用 SOUND_MIXER_READ宏来读取混音通道的增益大小,例如如下代码可以获得麦克风的输入增益:
ioctl(fd, SOUND_MIXER_READ(SOUND_MIXER_MIC), &vol);
对于只有一个混音通道的单声道设备来说,返回的增益大小保存在低位字节中。而对于支持多个混音通道的双声道设备来说,返回的增益大小实际上包括两个部分,分别代表左、右两个声道的值,其中低位字节保存左声道的音量,而高位字节则保存右声道的音量。下面的代码可以从返回值中依次提取左右声道的增益大小:
int left, right;
left = vol & 0xff;
right = (vol & 0xff00) 》》 8;
? SOUND_MIXER_WRITE宏
如果想设置混音通道的增益大小,则可以通过SOUND_MIXER_WRITE宏来实现,例如下面的语句可以用来设置麦克风的输入增益:
vol = (right 《《 8) + left;
ioctl(fd, SOUND_MIXER_WRITE(SOUND_MIXER_MIC), &vol);
? 查询Mixer信息
声卡驱动程序提供了多个ioctl()系统调用来获得混音器的信息,它们通常返回一个整型的位掩码,其中每一位分别代表一个特定的混音通道,如果相应的位为1,则说明与之对应的混音通道是可用的。
通过 SOUND_MIXER_READ_DEVMASK返回的位掩码查询出能够被声卡支持的每一个混音通道,而通过 SOUND_MIXER_READ_RECMAS返回的位掩码则可以查询出能够被当作录音源的每一个通道。例如,如下代码可用来检查CD输入是否是一个有效的混音通道:
ioctl(fd, SOUND_MIXER_READ_DEVMASK, &devmask);
if (devmask & SOUND_MIXER_CD)
printf(“The CD input is supported”);
如下代码可用来检查CD输入是否是一个有效的录音源:
ioctl(fd, SOUND_MIXER_READ_RECMASK, &recmask);
if (recmask & SOUND_MIXER_CD)
printf(“The CD input can be a recording source”);
大多数声卡提供了多个录音源,通过 SOUND_MIXER_READ_RECSRC可以查询出当前正在使用的录音源,同一时刻可使用2个或2个以上的录音源,具体由声卡硬件本身决定。相应地,使用 SOUND_MIXER_WRITE_RECSRC可以设置声卡当前使用的录音源,如下代码可以将CD输入作为声卡的录音源使用:
devmask = SOUND_MIXER_CD;
ioctl(fd, SOUND_MIXER_WRITE_RECSRC, &devmask);
此外,所有的混音通道都有单声道和双声道的区别,如果需要知道哪些混音通道提供了对立体声的支持,可以通过SOUND_MIXER_READ_STEREODEVS来获得。
代码清单17.4的程序实现了利用/dev/mixer接口对混音器进行编程的过程,该程序可对各种混音通道的增益进行调节。
代码清单17.4 OSS mixer接口应用编程范例
1 #include
2 #include
3 #include
4 #include
5 #include
6 #include
7 /* 用来存储所有可用混音设备的名称 */
8 const char *sound_device_names[] = SOUND_DEVICE_NAMES;
9 int fd; /* 混音设备所对应的文件描述符 */
10 int devmask, stereodevs; /* 混音器信息对应的bit掩码 */
11 char *name;
12 /* 显示命令的使用方法及所有可用的混音设备 */
13 void usage()
14 {
15 int i;
16 fprintf(stderr, “usage: %s /n”
17 “%s /n/n”“Where is one of:/n”, name, name);
18 for (i = 0; i 《 SOUND_MIXER_NRDEVICES; i++)
19 if ((1 《《 i) &devmask)
20 /* 只显示有效的混音设备 */
21 fprintf(stderr, “%s ”, sound_device_names[i]);
22 fprintf(stderr, “/n”);
23 exit(1);
24 }
25
26 int main(int argc, char *argv[])
27 {
28 int left, right, level; /* 增益设置 */
29 int status; /* 系统调用的返回值 */
30 int device; /* 选用的混音设备 */
31 char *dev; /* 混音设备的名称 */
32 int i;
33 name = argv[0];
34 /* 以只读方式打开混音设备 */
35 fd = open(“/dev/mixer”, O_RDONLY);
36 if (fd == - 1)
37 {
38 perror(“unable to open /dev/mixer”);
39 exit(1);
40 }
41
42 /* 获得所需要的信息 */
43 status = ioctl(fd, SOUND_MIXER_READ_DEVMASK, &devmask);
44 if (status == - 1)
45 perror(“SOUND_MIXER_READ_DEVMASK ioctl failed”);
46 status = ioctl(fd, SOUND_MIXER_READ_STEREODEVS, &stereodevs);
47 if (status == - 1)
48 perror(“SOUND_MIXER_READ_STEREODEVS ioctl failed”);
49 /* 检查用户输入 */
50 if (argc != 3 && argc != 4)
51 usage();
52 /* 保存用户输入的混音器名称 */
53 dev = argv[1];
54 /* 确定即将用到的混音设备 */
55 for (i = 0; i 《 SOUND_MIXER_NRDEVICES; i++)
56 if (((1 《《 i) &devmask) && !strcmp(dev, sound_device_names[i]))
57 break;
58 if (i == SOUND_MIXER_NRDEVICES)
59 {
60 /* 没有找到匹配项 */
61 fprintf(stderr, “%s is not a valid mixer device/n”, dev);
62 usage();
63 }
64 /* 查找到有效的混音设备 */
65 device = i;
66 /* 获取增益值 */
67 if (argc == 4)
68 {
69 /* 左、右声道均给定 */
70 left = atoi(argv[2]);
71 right = atoi(argv[3]);
72 }
73 else
74 {
75 /* 左、右声道设为相等 */
76 left = atoi(argv[2]);
77 right = atoi(argv[2]);
78 }
79
80 /* 对非立体声设备给出警告信息 */
81 if ((left != right) && !((1 《《 i) &stereodevs))
82 {
83 fprintf(stderr, “warning: %s is not a stereo device/n”, dev);
84 }
85
86 /* 将两个声道的值合到同一变量中 */
87 level = (right 《《 8) + left;
88
89 /* 设置增益 */
90 status = ioctl(fd, MIXER_WRITE(device), &level);
91 if (status == - 1)
92 {
93 perror(“MIXER_WRITE ioctl failed”);
94 exit(1);
95 }
96 /* 获得从驱动返回的左右声道的增益 */
97 left = level &0xff;
98 right = (level &0xff00) 》》 8;
99 /* 显示实际设置的增益 */
100 fprintf(stderr, “%s gain set to %d%% / %d%%/n”, dev, left, right);
101 /* 关闭混音设备 */
102 close(fd);
103 return 0;
104 }
编译上述程序为可执行文件mixer,执行。/mixer 或。/mixer 可设置增益,device可以是vol、pcm、speaker、line、mic、cd、igain、line1、 phin、video。
17.4 Linux ALSA音频设备驱动
17.4.1 ALSA的组成
虽然OSS已经非常成熟,但它毕竟是一个没有完全开放源代码的商业产品,而ALSA (Advanced Linux Sound Architecture)恰好弥补了这一空白,它符合GPL,是在Linux下进行音频编程时另一种可供选择的声卡驱动体系结构,其官方网站为 http://www.alsa-project.org/。ALSA除了像OSS那样提供了一组内核驱动程序模块之外,还专门为简化应用程序的编写提供了相应的函数库,与OSS提供的基于ioctl的原始编程接口相比,ALSA函数库使用起来要更加方便一些。ALSA的主要特点有:
? 支持多种声卡设备
? 模块化的内核驱动程序
? 支持SMP和多线程
? 提供应用开发函数库(alsa-lib)以简化应用程序开发
? 支持OSS API,兼容OSS应用程序
ALSA 具有更加友好的编程接口,并且完全兼容于OSS,对应用程序员来讲无疑是一个更佳的选择。ALSA系统包括驱动包alsa-driver、开发包 alsa-libs、开发包插件alsa-libplugins、设置管理工具包alsa-utils、其他声音相关处理小程序包alsa-tools、特殊音频固件支持包alsa- firmware、OSS接口兼容模拟层工具alsa-oss共7个子项目,其中只有驱动包是必需的。
alsa- driver指内核驱动程序,包括硬件相关的代码和一些公共代码,非常庞大,代码总量达数十万行;alsa-libs指用户空间的函数库,提供给应用程序使用,应用程序应包含头文件asoundlib.h,并使用共享库libasound.so;alsa-utils包含一些基于ALSA的用于控制声卡的应用程序,如alsaconf(侦测系统中声卡并写一个适合的ALSA配置文件)、alsactl(控制ALSA声卡驱动的高级设置)、 alsamixer(基于ncurses的混音器程序)、amidi(用于读写ALSA RawMIDI)、amixer(ALSA声卡混音器的命令行控制)、aplay(基于命令行的声音文件播放)、arecord(基于命令行的声音文件录制)等。
目前ALSA内核提供给用户空间的接口有:
? 信息接口(Information Interface,/proc/asound)
? 控制接口(Control Interface,/dev/snd/controlCX)
? 混音器接口(Mixer Interface,/dev/snd/mixerCXDX)
? PCM接口(PCM Interface,/dev/snd/pcmCXDX)
? Raw迷笛接口(Raw MIDI Interface,/dev/snd/midiCXDX)
? 音序器接口(Sequencer Interface,/dev/snd/seq)
? 定时器接口(Timer Interface,/dev/snd/timer)
和OSS类似,上述接口也以文件的方式被提供,不同的是这些接口被提供给alsa-lib使用,而不是直接给应用程序使用的。应用程序最好使用alsa-lib,或者更高级的接口,比如jack提供的接口。
图17.6给出了ALSA声卡驱动与用户空间体系结构的简图,从中可以看出ALSA内核驱动与用户空间库及OSS之间的关系。
图17.6 ALSA体系结构
17.4.1 card和组件管理
对于每个声卡而言,必须创建1个“card”实例。card是声卡的“总部”,它管理这个声卡上的所有设备(组件),如PCM、mixers、MIDI、synthesizer等。因此,card和组件是ALSA声卡驱动中的主要组成元素。
1、创建card
struct snd_card *snd_card_new(int idx, const char *xid,
struct module *module, int extra_size);
idx是card索引号、xid是标识字符串、module一般为THIS_MODULE,extra_size是要分配的额外数据的大小,分配的extra_size大小的内存将作为card-》private_data。
2、创建组件
int snd_device_new(struct snd_card *card, snd_device_type_t type,
void *device_data, struct snd_device_ops *ops);
当 card被创建后,设备(组件)能够被创建并关联于该card。第1个参数是snd_card_new()创建的card指针,第2个参数type 指的是device-level即设备类型,形式为SNDRV_DEV_XXX,包括SNDRV_DEV_CODEC、 SNDRV_DEV_CONTROL、SNDRV_DEV_PCM、SNDRV_DEV_RAWMIDI等,用户自定义设备的device-level是 SNDRV_DEV_LOWLEVEL,ops参数是1个函数集(定义为snd_device_ops结构体)的指针,device_data是设备数据指针,注意函数snd_device_new()本身不会分配设备数据的内存,因此应事先分配。
3、组件释放
每个ALSA预定义的组件在构造时需调用snd_device_new(),而每个组件的析构方法则在函数集中被包含。对于PCM、AC97此类预定义组件,我们不需关心它们的析构,而对于自定义的组件,则需要填充snd_device_ops中的析构函数指针dev_free,这样,当 snd_card_free()被调用时,组件将自动被释放。
4、芯片特定的数据(Chip-Specific Data)
芯片特定的数据一般以struct xxxchip结构体形式组织,这个结构体中包含芯片相关的I/O端口地址、资源指针、中断号等,其意义等同于字符设备驱动中的 file-》private_data。定义芯片特定的数据主要有2种方法,一种方法是将sizeof(struct xxxchip)传入snd_card_new()的extra_size参数,它将自动成员snd_card的private_data成员,如代码清单17.5;另一种方法是在snd_card_new()传入给extra_size参数0,再分配sizeof(struct xxxchip)的内存,将分配内存的地址传入snd_device_new()的device_data的参数,如代码清单17.6。
代码清单17.5 创建芯片特定的数据方法1
1 struct xxxchip //芯片特定的数据结构体
2 {
3 。。。
4 };
5 card = snd_card_new(index, id, THIS_MODULE, sizeof(struct
6 xxxchip)); //创建声卡并申请xxx_chi内存作为card-》 private_data
7 struct xxxchip *chip = card-》private_data;
代码清单17.6 创建芯片特定的数据方法2
1 struct snd_card *card;
2 struct xxxchip *chip;
3 //使用0作为第4个参数,并动态分配xxx_chip的内存:
4 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
5 。。。
6 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
7 //在xxxchip结构体中,应该包括声卡指针:
8 struct xxxchip
9 {
10 struct snd_card *card;
11 。。。
12 };
13 //并将其card成员赋值为snd_card_new()创建的card指针:
14 chip-》card = card;
15 static struct snd_device_ops ops =
16 {
17 .dev_free = snd_xxx_chip_dev_free, //组件析构
18 };
19 。。。
20 //创建自定义组件
21 snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
22 //在析构函数中释放xxxchip内存
23 static int snd_xxx_chip_dev_free(struct snd_device *device)
24 {
25 return snd_xxx_chip_free(device-》device_data); //释放
26 }
5、注册/释放声卡
当snd_card被准备好以后,可使用snd_card_register()函数注册这个声卡:
int snd_card_register(struct snd_card *card)
对应的snd_card_free()完成相反的功能:
int snd_card_free(struct snd_card *card);
4、put()函数
put()用于从用户空间写入值,如果值被改变,该函数返回1,否则返回0;如果发生错误,该函数返回1个错误码。代码清单17.22给出了1个put()函数的范例。
代码清单17.22 snd_ctl_elem_info结构体中put()函数范例
1 static int snd_xxxctl_put(struct snd_kcontrol *kcontrol, struct
2 snd_ctl_elem_value *ucontrol)
3 {
4 //从snd_kcontrol获得xxxchip指针
5 struct xxxchip *chip = snd_kcontrol_chip(kcontrol);
6 int changed = 0;//缺省返回值为0
7 //值被改变
8 if (chip-》current_value != ucontrol-》value.integer.value[0])
9 {
10 change_current_value(chip, ucontrol-》value.integer.value[0]);
11 changed = 1;//返回值为1
12 }
13 return changed;
14 }
对于get()和put()函数而言,如果control有多于1个元素,即count》1,则每个元素都需要被返回或写入。
5、构造control
当所有事情准备好后,我们需要创建1个control,调用snd_ctl_add()和snd_ctl_new1()这2个函数来完成,这2个函数的原型为:
int snd_ctl_add(struct snd_card *card, struct snd_kcontrol *kcontrol);
struct snd_kcontrol *snd_ctl_new1(const struct snd_kcontrol_new *ncontrol,
void *private_data);
snd_ctl_new1()函数用于创建1个snd_kcontrol并返回其指针,snd_ctl_add()函数用于将创建的snd_kcontrol添加到对应的card中。
6、变更通知
如果驱动中需要在中断服务程序中改变或更新1个control,可以调用snd_ctl_notify()函数,此函数原型为:
void snd_ctl_notify(struct snd_card *card, unsigned int mask, struct snd_ctl_elem_id *id);
该函数的第2个参数为事件掩码(event-mask),第3个参数为该通知的control元素id指针。
例如,如下语句定义的事件掩码SNDRV_CTL_EVENT_MASK_VALUE意味着control值的改变被通知:
snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
17.4.4 AC97 API接口
ALSA AC97编解码层被很好地定义,利用它,驱动工程师只需编写少量底层的控制函数。
1、AC97实例构造
为了创建1个AC97实例,首先需要调用snd_ac97_bus()函数构建AC97总线及其操作,这个函数的原型为:
int snd_ac97_bus(struct snd_card *card, int num, struct snd_ac97_bus_ops *ops,
void *private_data, struct snd_ac97_bus **rbus);
该函数的第3个参数ops是1个snd_ac97_bus_ops结构体,其定义如代码清单17.23。
代码清单17.23 snd_ac97_bus_ops结构体
1 struct snd_ac97_bus_ops
2 {
3 void(*reset)(struct snd_ac97 *ac97); //复位函数
4 //写入函数
5 void(*write)(struct snd_ac97 *ac97, unsigned short reg, unsigned short val);
6 //读取函数
7 unsigned short(*read)(struct snd_ac97 *ac97, unsigned short reg);
8 void(*wait)(struct snd_ac97 *ac97);
9 void(*init)(struct snd_ac97 *ac97);
10 };
接下来,调用snd_ac97_mixer()函数注册混音器,这个函数的原型为:
int snd_ac97_mixer(struct snd_ac97_bus *bus, struct snd_ac97_template *template, struct snd_ac97 **rac97);
代码清单17.24演示了AC97实例的创建过程。
代码清单17.24 AC97实例的创建过程范例
1 struct snd_ac97_bus *bus;
2 //AC97总线操作
3 static struct snd_ac97_bus_ops ops =
4 {
5 .write = snd_mychip_ac97_write,
6 .read = snd_mychip_ac97_read,
7 };
8 //AC97总线与操作创建
9 snd_ac97_bus(card, 0, &ops, NULL, &bus);
10 //AC97模板
11 struct snd_ac97_template ac97;
12 int err;
13 memset(&ac97, 0, sizeof(ac97));
14 ac97.private_data = chip;//私有数据
15 //注册混音器
16 snd_ac97_mixer(bus, &ac97, &chip-》ac97);
上述代码第1行的snd_ac97_bus结构体指针bus的指针被传入第9行的snd_ac97_bus()函数并被赋值,chip-》ac97的指针被传入第16行的snd_ac97_mixer()并被赋值,chip-》ac97将成员新创建AC97实例的指针。
如果1个声卡上包含多个编解码器,这种情况下,需要多次调用snd_ac97_mixer()并对snd_ac97的num成员(编解码器序号)赋予相应的序号。驱动中可以为不同的编解码器编写不同的snd_ac97_bus_ops成员函数中,或者只是在相同的一套成员函数中通过ac97.num获得序号后再区分进行具体的操作。
2、snd_ac97_bus_ops成员函数
snd_ac97_bus_ops结构体中的read()和write()成员函数完成底层的硬件访问,reset()函数用于复位编解码器,wait()函数用于编解码器标准初始化过程中的特定等待,如果芯片要求额外的等待时间,应实现这个函数,init()用于完成编解码器附加的初始化。代码清单17.25给出了read()和write()函数的范例。
代码清单17.25 snd_ac97_bus_ops结构体中read()和write()函数范例
1 static unsigned short snd_xxxchip_ac97_read(struct snd_ac97 *ac97, unsigned
2 short reg)
3 {
4 struct xxxchip *chip = ac97-》private_data;
5 。。。
6 return the_register_value; //返回寄存器值
7 }
8
9 static void snd_xxxchip_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
10 unsigned short val)
11 {
12 struct xxxchip *chip = ac97-》private_data;
13 。。。
14 // 将被给的寄存器值写入codec
15 }
3、修改寄存器
如果需要在驱动中访问编解码器,可使用如下函数:
void snd_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short value);
int snd_ac97_update(struct snd_ac97 *ac97, unsigned short reg, unsigned short value);
int snd_ac97_update_bits(struct snd_ac97 *ac97, unsigned short reg, unsigned short mask, unsigned short value);
unsigned short snd_ac97_read(struct snd_ac97 *ac97, unsigned short reg);
snd_ac97_update()与void snd_ac97_write()的区别在于前者在值已经设置的情况下不会再设置,而后者则会再写一次。snd_ac97_update_bits()用于更新寄存器的某些位,由mask决定。
除此之外,还有1个函数可用于设置采样率:
int snd_ac97_set_rate(struct snd_ac97 *ac97, int reg, unsigned int rate);
这个函数的第2个参数reg可以是AC97_PCM_MIC_ADC_RATE、AC97_PCM_FRONT_DAC_RATE、 AC97_PCM_LR_ADC_RATE和AC97_SPDIF,对于AC97_SPDIF而言,寄存器并非真地被改变了,只是相应的IEC958状态位将被更新。
4、时钟调整
在一些芯片上,编解码器的时钟不是48000而是使用PCI时钟以节省1个晶体,在这种情况下,我们应该改变bus-》clock为相应的值,例如intel8x0和es1968包含时钟的自动测量函数。
5、proc文件
ALSA AC97接口会创建如/proc/asound/card0/codec97#0/ac97#0-0和ac97#0-0+regs这样的proc文件,通过这些文件可以察看编解码器目前的状态和寄存器。
如果1个chip上有多个codecs,可多次调用snd_ac97_mixer()。
17.4.5 ALSA用户空间编程
ALSA驱动的声卡在用户空间不宜直接使用文件接口,而应使用alsa-lib,代码清单17.26给出了基于ALSA音频驱动的最简单的放音应用程序。
代码清单17.26 ALSA用户空间放音程序
1 #include
2 #include
3 #include
4
5 main(int argc, char *argv[])
6 {
7 int i;
8 int err;
9 short buf[128];
10 snd_pcm_t *playback_handle; //PCM设备句柄
11 snd_pcm_hw_params_t *hw_params; //硬件信息和PCM流配置
12 //打开PCM,最后1个参数为0意味着标准配置
13 if ((err = snd_pcm_open(&playback_handle, argv[1], SND_PCM_STREAM_PLAYBACK, 0)
14 ) 《 0)
15 {
16 fprintf(stderr, “cannot open audio device %s (%s)/n”, argv[1], snd_strerror
17 (err));
18 exit(1);
19 }
20 //分配snd_pcm_hw_params_t结构体
21 if ((err = snd_pcm_hw_params_malloc(&hw_params)) 《 0)
22 {
23 fprintf(stderr, “cannot allocate hardware parameter structure (%s)/n”,
24 snd_strerror(err));
25 exit(1);
26 }
27 //初始化hw_params
28 if ((err = snd_pcm_hw_params_any(playback_handle, hw_params)) 《 0)
29 {
30 fprintf(stderr, “cannot initialize hardware parameter structure (%s)/n”,
31 snd_strerror(err));
32 exit(1);
33 }
34 //初始化访问权限
35 if ((err = snd_pcm_hw_params_set_access(playback_handle, hw_params,
36 SND_PCM_ACCESS_RW_INTERLEAVED)) 《 0)
37 {
38 fprintf(stderr, “cannot set access type (%s)/n”, snd_strerror(err));
39 exit(1);
40 }
41 //初始化采样格式
42 if ((err = snd_pcm_hw_params_set_format(playback_handle, hw_params,
43 SND_PCM_FORMAT_S16_LE)) 《 0)
44 {
45 fprintf(stderr, “cannot set sample format (%s)/n”, snd_strerror(err));
46 exit(1);
47 }
48 //设置采样率,如果硬件不支持我们设置的采样率,将使用最接近的
49 if ((err = snd_pcm_hw_params_set_rate_near(playback_handle, hw_params, 44100,
50 0)) 《 0)
51 {
52 fprintf(stderr, “cannot set sample rate (%s)/n”, snd_strerror(err));
53 exit(1);
54 }
55 //设置通道数量
56 if ((err = snd_pcm_hw_params_set_channels(playback_handle, hw_params, 2)) 《 0)
57 {
58 fprintf(stderr, “cannot set channel count (%s)/n”, snd_strerror(err));
59 exit(1);
60 }
61 //设置hw_params
62 if ((err = snd_pcm_hw_params(playback_handle, hw_params)) 《 0)
63 {
64 fprintf(stderr, “cannot set parameters (%s)/n”, snd_strerror(err));
65 exit(1);
66 }
67 //释放分配的snd_pcm_hw_params_t结构体
68 snd_pcm_hw_params_free(hw_params);
69 //完成硬件参数设置,使设备准备好
70 if ((err = snd_pcm_prepare(playback_handle)) 《 0)
71 {
72 fprintf(stderr, “cannot prepare audio interface for use (%s)/n”,
73 snd_strerror(err));
74 exit(1);
75 }
76
77 for (i = 0; i 《 10; ++i)
78 {
79 //写音频数据到PCM设备
80 if ((err = snd_pcm_writei(playback_handle, buf, 128)) != 128)
81 {
82 fprintf(stderr, “write to audio interface failed (%s)/n”, snd_strerror
83 (err));
84 exit(1);
85 }
86 }
87 //关闭PCM设备句柄
88 snd_pcm_close(playback_handle);
89 exit(0);
90 }
由上述代码可以看出,ALSA用户空间编程的流程与17.3.4节给出的OSS驱动用户空间编程的流程基本是一致的,都经过了“打开――设置参数――读写音频数据”的过程,不同在于OSS打开的是设备文件,设置参数使用的是Linux ioctl()系统调用,读写音频数据使用的是Linux read()、write()文件API,而ALSA则全部使用alsa-lib中的API。
把上述代码第80行的snd_pcm_writei()函数替换为snd_pcm_readi()就编程了1个最简单的录音程序。
代码清单17.27的程序打开1个音频接口,配置它为立体声、16位、44.1khz采样和基于interleave的读写。它阻塞等待直接接口准备好接收放音数据,这时候将数据拷贝到缓冲区。这种设计方法使得程序很容易移植到类似JACK、LADSPA、Coreaudio、VST等callback机制驱动的系统。
代码清单17.27 ALSA用户空间放音程序(基于“中断”)
1 #include
2 #include
3 #include
4 #include
5 #include
6
7 snd_pcm_t *playback_handle;
8 short buf[4096];
9
10 int playback_callback(snd_pcm_sframes_t nframes)
11 {
12 int err;
13 printf(“playback callback called with %u frames/n”, nframes);
14 /* 填充缓冲区 */
15 if ((err = snd_pcm_writei(playback_handle, buf, nframes)) 《 0)
16 {
17 fprintf(stderr, “write failed (%s)/n”, snd_strerror(err));
18 }
19
20 return err;
21 }
22
23 main(int argc, char *argv[])
24 {
25
26 snd_pcm_hw_params_t *hw_params;
27 snd_pcm_sw_params_t *sw_params;
28 snd_pcm_sframes_t frames_to_deliver;
29 int nfds;
30 int err;
31 struct pollfd *pfds;
32
33 if ((err = snd_pcm_open(&playback_handle, argv[1], SND_PCM_STREAM_PLAYBACK, 0)
34 ) 《 0)
35 {
36 fprintf(stderr, “cannot open audio device %s (%s)/n”, argv[1], snd_strerror
37 (err));
38 exit(1);
39 }
40
41 if ((err = snd_pcm_hw_params_malloc(&hw_params)) 《 0)
42 {
43 fprintf(stderr, “cannot allocate hardware parameter structure (%s)/n”,
44 snd_strerror(err));
45 exit(1);
46 }
47
48 if ((err = snd_pcm_hw_params_any(playback_handle, hw_params)) 《 0)
49 {
50 fprintf(stderr, “cannot initialize hardware parameter structure (%s)/n”,
51 snd_strerror(err));
52 exit(1);
53 }
54
55 if ((err = snd_pcm_hw_params_set_access(playback_handle, hw_params,
56 SND_PCM_ACCESS_RW_INTERLEAVED)) 《 0)
57 {
58 fprintf(stderr, “cannot set access type (%s)/n”, snd_strerror(err));
59 exit(1);
60 }
61
62 if ((err = snd_pcm_hw_params_set_format(playback_handle, hw_params,
63 SND_PCM_FORMAT_S16_LE)) 《 0)
64 {
65 fprintf(stderr, “cannot set sample format (%s)/n”, snd_strerror(err));
66 exit(1);
67 }
68
69 if ((err = snd_pcm_hw_params_set_rate_near(playback_handle, hw_params, 44100,
70 0)) 《 0)
71 {
72 fprintf(stderr, “cannot set sample rate (%s)/n”, snd_strerror(err));
73 exit(1);
74 }
75
76 if ((err = snd_pcm_hw_params_set_channels(playback_handle, hw_params, 2)) 《 0)
77 {
78 fprintf(stderr, “cannot set channel count (%s)/n”, snd_strerror(err));
79 exit(1);
80 }
81
82 if ((err = snd_pcm_hw_params(playback_handle, hw_params)) 《 0)
83 {
84 fprintf(stderr, “cannot set parameters (%s)/n”, snd_strerror(err));
85 exit(1);
86 }
87
88 snd_pcm_hw_params_free(hw_params);
89
90 /* 告诉ALSA当4096个以上帧可以传递时唤醒我们 */
91 if ((err = snd_pcm_sw_params_malloc(&sw_params)) 《 0)
92 {
93 fprintf(stderr, “cannot allocate software parameters structure (%s)/n”,
94 snd_strerror(err));
95 exit(1);
96 }
97 if ((err = snd_pcm_sw_params_current(playback_handle, sw_params)) 《 0)
98 {
99 fprintf(stderr, “cannot initialize software parameters structure (%s)/n”,
100 snd_strerror(err));
101 exit(1);
102 }
103 /* 设置4096帧传递一次数据 */
104 if ((err = snd_pcm_sw_params_set_avail_min(playback_handle, sw_params, 4096))
105 《 0)
106 {
107 fprintf(stderr, “cannot set minimum available count (%s)/n”, snd_strerror
108 (err));
109 exit(1);
110 }
111 /* 一旦有数据就开始播放 */
112 if ((err = snd_pcm_sw_params_set_start_threshold(playback_handle, sw_params,
113 0U)) 《 0)
114 {
115 fprintf(stderr, “cannot set start mode (%s)/n”, snd_strerror(err));
116 exit(1);
117 }
118 if ((err = snd_pcm_sw_params(playback_handle, sw_params)) 《 0)
119 {
120 fprintf(stderr, “cannot set software parameters (%s)/n”, snd_strerror(err));
121 exit(1);
122 }
123
124 /* 每4096帧接口将中断内核,ALSA将很快唤醒本程序 */
125
126 if ((err = snd_pcm_prepare(playback_handle)) 《 0)
127 {
128 fprintf(stderr, “cannot prepare audio interface for use (%s)/n”,
129 snd_strerror(err));
130 exit(1);
131 }
132
133 while (1)
134 {
135
136 /* 等待,直到接口准备好传递数据,或者1秒超时发生 */
137 if ((err = snd_pcm_wait(playback_handle, 1000)) 《 0)
138 {
139 fprintf(stderr, “poll failed (%s)/n”, strerror(errno));
140 break;
141 }
142
143 /* 查出有多少空间可放置playback数据 */
144 if ((frames_to_deliver = snd_pcm_avail_update(playback_handle)) 《 0)
145 {
146 if (frames_to_deliver == - EPIPE)
147 {
148 fprintf(stderr, “an xrun occured/n”);
149 break;
150 }
151 else
152 {
153 fprintf(stderr, “unknown ALSA avail update return value (%d)/n”,
154 frames_to_deliver);
155 break;
156 }
157 }
158
159 frames_to_deliver = frames_to_deliver 》 4096 ? 4096 : frames_to_deliver;
160
161 /* 传递数据 */
162 if (playback_callback(frames_to_deliver) != frames_to_deliver)
163 {
164 fprintf(stderr, “playback callback failed/n”);
165 break;
166 }
167 }
168
169 snd_pcm_close(playback_handle);
170 exit(0);
171 }
17.5实例1:S3C2410+UDA1341 OSS驱动
17.5.1 S3C2410与UDA1341接口硬件描述
如图17.7,S3C2410处理器内置了IIS总线接口,S3C2410的IIS总线时钟信号SCK与Philip公司的UDA1341的BCK连接,字段选择连接于WS引脚。UDA1341提供两个音频通道,分别用于输入和输出,对应的引脚连接:IIS总线的音频输出IISSDO对应于UDA1341的音频输入;IIS总线的音频输入IISSDI对应于UDA1341的音频输出。UDA1341的L3接口相当于一个混音器控制接口,可以用来控制输入/输出音频信号的音量大小、低音等。L3接口的引脚L3MODE、L3DATA、L3CLOCK分别连接到S3C2410的3个GPIO来控制。
图17.7 S3C2410与UDA1341 IIS接口连接
Philips 公司的UDA1341支持IIS总线数据格式,采用位元流转换技术进行信号处理,完成声音信号的模数转换,具有可编程增益放大器和数字自动增益控制器,其低功耗、低电压的特点使其非常适合用于MD/CD、笔记本电脑等便携式设备。UDA1341对外提供2组音频信号输入接口,每组包括左右2个声道。
图17.8 UDA1341 内部结构
如图17.8所示,2组音频输入在UDA1341内部的处理存在很大差别:第一组音频信号输入后经过1个0 dB/6 dB开关后采样送入数字混音器:第二组音频信号输入后先经过可编程增益放大器(PGA),然后再进行采样,采样后的数据要再经过数字自动增益控制器(AGC)送入数字混音器。设计硬件电路时选用第二组输入音频信号,这样可以通过软件的方法实现对系统输入音量大小的调节。显然选用第二组可以通过L3总线接口控制AGC来实现。另外,选择通道2还可以通过PGA对从MIC输入的信号进行片内放大。
S3C2410与UDA1341之间的IIS接口有3种工作方式:
• 正常传输模式。该模式下使用IISCON寄存器对FIFO进行控制,CPU通过轮询方式访问FIFO寄存器,以完成对FIFO缓存传输或接收的处理。
• DMA模式。通过设置IISFCON寄存器使IIS接口工作于这种模式。在该模式下,FIFO寄存器组的控制权掌握在DMA控制器上,当FIFO满时,由DMA控制器对FIFO中的数据进行处理。DMA模式的选择由IISCON寄存器的第4和第5位控制。
• 传输/接收模式。该模式下,IIS数据线将通过双通道DMA同时接收和发送音频数据。在OSS驱动中,将使用此模式。
17.5.2注册dsp和mixer接口
如代码清单17.28,在UDA1341 OSS驱动的模块加载函数中,将完成如下工作:
• 初始化IIS接口硬件,设置L3总线对应的GPIO。
• 申请用于音频数据传输的DMA通道。
• 初始化UDA1341到恰当的工作模式。
• 注册dsp和mixer接口。
代码清单17.28 UDA1341 OSS驱动模块加载函数
1 //音频(dsp)文件操作
2 static struct file_operations smdk2410_audio_fops =
3 {
4 llseek: smdk2410_audio_llseek,
5 write: smdk2410_audio_write,
6 read: smdk2410_audio_read,
7 poll: smdk2410_audio_poll,
8 ioctl: smdk2410_audio_ioctl,
9 open: smdk2410_audio_open,
10 release: smdk2410_audio_release
11 };
12 //混音器文件操作
13 static struct file_operations smdk2410_mixer_fops =
14 {
15 ioctl: smdk2410_mixer_ioctl,
16 open: smdk2410_mixer_open,
17 release: smdk2410_mixer_release
18 };
19
20 int __init s3c2410_uda1341_init(void)
21 {
22 unsigned long flags;
23
24 local_irq_save(flags);
25
26 /* 设置IIS接口引脚GPIO */
27
28 set_gpio_ctrl(GPIO_L3CLOCK); // GPB 4: L3CLOCK, 输出
29 set_gpio_ctrl(GPIO_L3DATA); // GPB 3: L3DATA, 输出
30 set_gpio_ctrl(GPIO_L3MODE); // GPB 2: L3MODE, 输出
31
32
33 set_gpio_ctrl(GPIO_E3 | GPIO_PULLUP_EN | GPIO_MODE_IISSDI); //GPE 3: IISSDI
34 set_gpio_ctrl(GPIO_E0 | GPIO_PULLUP_EN | GPIO_MODE_IISSDI); //GPE 0: IISLRCK
35 set_gpio_ctrl(GPIO_E1 | GPIO_PULLUP_EN | GPIO_MODE_IISSCLK); //GPE 1:IISSCLK
36 set_gpio_ctrl(GPIO_E2 | GPIO_PULLUP_EN | GPIO_MODE_CDCLK); //GPE 2: CDCLK
37 set_gpio_ctrl(GPIO_E4 | GPIO_PULLUP_EN | GPIO_MODE_IISSDO); //GPE 4: IISSDO
38
39 local_irq_restore(flags);
40
41 init_uda1341();
42
43 /* 输出流采样DMA通道2 */
44 output_stream.dma_ch = DMA_CH2;
45
46 if (audio_init_dma(&output_stream, “UDA1341 out”))
47 {
48 audio_clear_dma(&output_stream);
49 printk(KERN_WARNING AUDIO_NAME_VERBOSE “: unable to get DMA channels/n”);
50 return - EBUSY;
51 }
52 /* 输入流采样DMA通道1 */
53 input_stream.dma_ch = DMA_CH1;
54
55 if (audio_init_dma(&input_stream, “UDA1341 in”))
56 {
57 audio_clear_dma(&input_stream);
58 printk(KERN_WARNING AUDIO_NAME_VERBOSE “: unable to get DMA channels/n”);
59 return - EBUSY;
60 }
61
62 /* 注册dsp和mixer设备接口 */
63 audio_dev_dsp = register_sound_dsp(&smdk2410_audio_fops, - 1);
64 audio_dev_mixer = register_sound_mixer(&smdk2410_mixer_fops, - 1);
65
66 printk(AUDIO_NAME_VERBOSE “ initialized/n”);
67
68 return 0;
69 }
UDA1341 OSS驱动的模块卸载函数中,将完成与模块加载函数相反的工作,如代码清单17.29。
代码清单17.29 UDA1341 OSS驱动模块卸载函数
1 void __exit s3c2410_uda1341_exit(void)
2 {
3 //注销dsp和mixer设备接口
4 unregister_sound_dsp(audio_dev_dsp);
5 unregister_sound_mixer(audio_dev_mixer);
6
7 //注销DMA通道
8 audio_clear_dma(&output_stream);
9 audio_clear_dma(&input_stream); /* input */
10 printk(AUDIO_NAME_VERBOSE “ unloaded/n”);
11 }
17.5.3 mixer接口IO控制函数
UDA1341 OSS驱动的ioctl()函数处理多个mixer命令,如SOUND_MIXER_INFO、 SOUND_MIXER_READ_STEREODEVS、SOUND_MIXER_WRITE_VOLUME等,用于获得或设置音量和增益等信息,如代码清单17.30所示。
代码清单17.30 UDA1341 OSS驱动ioctl()函数
1 static int smdk2410_mixer_ioctl(struct inode *inode, struct file *file,
2 unsigned int cmd, unsigned long arg)
3 {
4 int ret;
5 long val = 0;
6
7 switch (cmd)
8 {
9 case SOUND_MIXER_INFO: //获得mixer信息
10 {
11 mixer_info info;
12 strncpy(info.id, “UDA1341”, sizeof(info.id));
13 strncpy(info.name, “Philips UDA1341”, sizeof(info.name));
14 info.modify_counter = audio_mix_modcnt;
15 return copy_to_user((void*)arg, &info, sizeof(info));
16 }
17
18 case SOUND_OLD_MIXER_INFO:
19 {
20 _old_mixer_info info;
21 strncpy(info.id, “UDA1341”, sizeof(info.id));
22 strncpy(info.name, “Philips UDA1341”, sizeof(info.name));
23 return copy_to_user((void*)arg, &info, sizeof(info));
24 }
25
26 case SOUND_MIXER_READ_STEREODEVS://获取设备对立体声的支持
27 return put_user(0, (long*)arg);
28
29 case SOUND_MIXER_READ_CAPS: //获取声卡能力
30 val = SOUND_CAP_EXCL_INPUT;
31 return put_user(val, (long*)arg);
32
33 case SOUND_MIXER_WRITE_VOLUME: //设置音量
34 ret = get_user(val, (long*)arg);
35 if (ret)
36 return ret;
37 uda1341_volume = 63-(((val &0xff) + 1) *63) / 100;
38 uda1341_l3_address(UDA1341_REG_DATA0);
39 uda1341_l3_data(uda1341_volume);
40 break;
41
42 case SOUND_MIXER_READ_VOLUME: //获取音量
43 val = ((63-uda1341_volume) *100) / 63;
44 val |= val 《《 8;
45 return put_user(val, (long*)arg);
46
47 case SOUND_MIXER_READ_IGAIN: //获得增益
48 val = ((31-mixer_igain) *100) / 31;
49 return put_user(val, (int*)arg);
50
51 case SOUND_MIXER_WRITE_IGAIN: //设置增益
52 ret = get_user(val, (int*)arg);
53 if (ret)
54 return ret;
55 mixer_igain = 31-(val *31 / 100);
56 /* 使用mixer增益通道1 */
57 uda1341_l3_address(UDA1341_REG_DATA0);
58 uda1341_l3_data(EXTADDR(EXT0));
59 uda1341_l3_data(EXTDATA(EXT0_CH1_GAIN(mixer_igain)));
60 break;
61
62 default:
63 DPRINTK(“mixer ioctl %u unknown/n”, cmd);
64 return - ENOSYS;
65 }
66
67 audio_mix_modcnt++;
68 return 0;
69 }
17.5.4 dsp接口音频数据传输
OSS声卡驱动中,dsp接口的读写函数是核心中的核心,直接对应着录音和放音的流程。
OSS 的读函数存在一个与普通字符设备驱动读函数不同的地方,那就是一般而言,对于普通字符设备驱动,如果用户要求读count个字节,而实际上只有 count1字节可获得(count1《 count)时,它会将这count1字节拷贝给用户后即返回count1;而dsp接口的读函数会分次拷贝,如果第1次不能满足,它会等待第2次,直到 “count1 + count2 + 。。。 = count”为止再返回count。这种设计是合理的,因为OSS驱动应该负责音频数据的流量控制。代码清单17.31给出了UDA1341 OSS驱动的读函数实现。
代码清单17.31 UDA1341 OSS驱动的读函数
1 static ssize_t smdk2410_audio_read(struct file *file, char *buffer, size_t
2 count, loff_t *ppos)
3 {
4 const char *buffer0 = buffer;
5 audio_stream_t *s = &input_stream; //得到数据区的指针
6 int chunksize, ret = 0;
7
8 DPRINTK(“audio_read: count=%d/n”, count);
9
10 if (ppos != &file-》f_pos)
11 return - ESPIPE;
12
13 if (!s-》buffers)
14 {
15 int i;
16
17 if (audio_setup_buf(s))
18 return - ENOMEM;
19 //依次从缓存区读取数据
20 for (i = 0; i 《 s-》nbfrags; i++)
21 {
22 audio_buf_t *b = s-》buf;
23 down(&b-》sem);
24 s3c2410_dma_queue_buffer(s-》dma_ch, (void*)b, b-》dma_addr, s-》fragsize,
25 DMA_BUF_RD);
26 NEXT_BUF(s, buf);
27 }
28 }
29
30 //满足用户的所有读需求
31 while (count 》 0)
32 {
33 audio_buf_t *b = s-》buf;
34
35 if (file-》f_flags &O_NONBLOCK) //非阻塞
36 {
37 ret = - EAGAIN;
38 if (down_trylock(&b-》sem))
39 break;
40 }
41 else
42 {
43 ret = - ERESTARTSYS;
44 if (down_interruptible(&b-》sem))
45 break;
46 }
47
48 chunksize = b-》size;
49 //从缓存区读取数据
50 if (chunksize 》 count)
51 chunksize = count;
52 DPRINTK(“read %d from %d/n”, chunksize, s-》buf_idx);
53 if (copy_to_user(buffer, b-》start + s-》fragsize - b-》size, //调用拷贝函数
54 chunksize))
55 {
56 up(&b-》sem);
57 return - EFAULT;
58 }
59 b-》size -= chunksize;
60
61 buffer += chunksize;
62 count -= chunksize; //已经给用户拷贝了一部分,count减少
63 if (b-》size 》 0)
64 {
65 up(&b-》sem);
66 break;
67 }
68 //将缓存区释放
69 s3c2410_dma_queue_buffer(s-》dma_ch, (void*)b, b-》dma_addr, s-》fragsize,
70 DMA_BUF_RD);
71
72 NEXT_BUF(s, buf);
73 }
74
75 if ((buffer - buffer0))
76 ret = buffer - buffer0;
77
78 return ret;
79 }
OSS驱动dsp接口的写函数与读函数类似,一般来说,它也应该满足用户的所有写需求后再返回,如代码清单17.32。
代码清单17.32 UDA1341 OSS驱动的写函数
1 static ssize_t smdk2410_audio_write(struct file *file, const char *buffer,
2 size_t count, loff_t *ppos)
3 {
4 const char *buffer0 = buffer;
5 audio_stream_t *s = &output_stream;
6 int chunksize, ret = 0;
7
8 DPRINTK(“audio_write : start count=%d/n”, count);
9
10 switch (file-》f_flags &O_ACCMODE)
11 {
12 case O_WRONLY: //只写
13 case O_RDWR: //读写
14 break;
15 default: //只读不合法
16 return - EPERM;
17 }
18 //设置DMA缓冲区
19 if (!s-》buffers && audio_setup_buf(s))
20 return - ENOMEM;
21
22 count &= ~0x03;
23
24 while (count 》 0) //直到满足用户的所有写需求
25 {
26 audio_buf_t *b = s-》buf;
27 //非阻塞访问
28 if (file-》f_flags &O_NONBLOCK)
29 {
30 ret = - EAGAIN;
31 if (down_trylock(&b-》sem))
32 break;
33 }
34 else
35 {
36 ret = - ERESTARTSYS;
37 if (down_interruptible(&b-》sem))
38 break;
39 }
40 //从用户空间拷贝音频数据
41 if (audio_channels == 2)
42 {
43 chunksize = s-》fragsize - b-》size;
44 if (chunksize 》 count)
45 chunksize = count;
46 DPRINTK(“write %d to %d/n”, chunksize, s-》buf_idx);
47 if (copy_from_user(b-》start + b-》size, buffer, chunksize))
48 {
49 up(&b-》sem);
50 return - EFAULT;
51 }
52 b-》size += chunksize;
53 }
54 else
55 {
56 chunksize = (s-》fragsize - b-》size) 》》 1;
57
58 if (chunksize 》 count)
59 chunksize = count;
60 DPRINTK(“write %d to %d/n”, chunksize *2, s-》buf_idx);
61 if (copy_from_user_mono_stereo(b-》start + b-》size, buffer, chunksize))
62 {
63 up(&b-》sem);
64 return - EFAULT;
65 }
66
67 b-》size += chunksize * 2;
68 }
69
70 buffer += chunksize;
71 count -= chunksize; //已经从用户拷贝了一部分,count减少
72 if (b-》size 《 s-》fragsize)
73 {
74 up(&b-》sem);
75 break;
76 }
77 //发起DMA操作
78 s3c2410_dma_queue_buffer(s-》dma_ch, (void*)b, b-》dma_addr, b-》size,
79 DMA_BUF_WR);
80 b-》size = 0;
81 NEXT_BUF(s, buf);
82 }
83
84 if ((buffer - buffer0))
85 ret = buffer - buffer0;
86
87 DPRINTK(“audio_write : end count=%d/n/n”, ret);
88
89 return ret;
90 }
17.6实例2:SA1100+ UDA1341 ALSA驱动
17.6.1 card注册与注销
同样是UDA1341芯片,如果以ALSA体系结构来实现它的驱动,会和OSS大不一样。如17.4.1节所言,在模块初始化和卸载的时候,需要注册和注销card,另外在模块加载的时候,也会注册mixer和pcm组件,如代码清单17.33。
代码清单17.33 UDA1341 ALSA驱动模块初始化与卸载
1 static int __init sa11xx_uda1341_probe(struct platform_device *devptr)
2 {
3 int err;
4 struct snd_card *card;
5 struct sa11xx_uda1341 *chip;
6
7 /* 新建card */
8 card = snd_card_new(-1, id, THIS_MODULE, sizeof(struct sa11xx_uda1341));
9 if (card == NULL)
10 return -ENOMEM;
11
12 chip = card-》private_data;
13 spin_lock_init(&chip-》s[0].dma_lock);
14 spin_lock_init(&chip-》s[1].dma_lock);
15
16 card-》private_free = snd_sa11xx_uda1341_free;//card私有数据释放
17 chip-》card = card;
18 chip-》samplerate = AUDIO_RATE_DEFAULT;
19
20 // 注册control(mixer)接口
21 if ((err = snd_chip_uda1341_mixer_new(card, &chip-》uda1341)))
22 goto nodev;
23
24 // 注册PCM接口
25 if ((err = snd_card_sa11xx_uda1341_pcm(chip, 0)) 《 0)
26 goto nodev;
27
28 strcpy(card-》driver, “UDA1341”);
29 strcpy(card-》shortname, “H3600 UDA1341TS”);
30 sprintf(card-》longname, “Compaq iPAQ H3600 with Philips UDA1341TS”);
31
32 snd_card_set_dev(card, &devptr-》dev);
33 //注册card
34 if ((err = snd_card_register(card)) == 0) {
35 printk( KERN_INFO “iPAQ audio support initialized/n” );
36 platform_set_drvdata(devptr, card);
37 return 0;
38 }
39
40 nodev:
41 snd_card_free(card);
42 return err;
43 }
44
45 static int __devexit sa11xx_uda1341_remove(struct platform_device *devptr)
46 {
47 //释放card
48 snd_card_free(platform_get_drvdata(devptr));
49 platform_set_drvdata(devptr, NULL);
50 return 0;
51 }
17.6.2 PCM设备的实现
PCM组件直接对应着ALSA驱动的录音和放音,从17.4.2节的描述可知,驱动从需要定义对应相应的snd_pcm_hardware结构体进行PCM设备硬件描述,如代码清单17.34。
代码清单17.34 UDA1341 ALSA驱动PCM接口snd_pcm_hardware结构体
1 static struct snd_pcm_hardware snd_sa11xx_uda1341_capture =
2 {
3 .info = (SNDRV_PCM_INFO_INTERLEAVED |
4 SNDRV_PCM_INFO_BLOCK_TRANSFER |
5 SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID |
6 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME),
7 .formats = SNDRV_PCM_FMTBIT_S16_LE,
8 .rates = (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |/
9 SNDRV_PCM_RATE_22050 | SNDRV_PCM_RATE_32000 |/
10 SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 |/
11 SNDRV_PCM_RATE_KNOT),
12 .rate_min = 8000,
13 .rate_max = 48000,
14 .channels_min = 2,
15 .channels_max = 2,
16 .buffer_bytes_max = 64*1024,
17 .period_bytes_min = 64,
18 .period_bytes_max = DMA_BUF_SIZE,
19 .periods_min = 2,
20 .periods_max = 255,
21 .fifo_size = 0,
22 };
23
24 static struct snd_pcm_hardware snd_sa11xx_uda1341_playback =
25 {
26 .info = (SNDRV_PCM_INFO_INTERLEAVED |
27 SNDRV_PCM_INFO_BLOCK_TRANSFER |
28 SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID |
29 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME),
30 .formats = SNDRV_PCM_FMTBIT_S16_LE,
31 .rates = (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |/
32 SNDRV_PCM_RATE_22050 | SNDRV_PCM_RATE_32000 |/
33 SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 |/
34 SNDRV_PCM_RATE_KNOT),
35 .rate_min = 8000,
36 .rate_max = 48000,
37 .channels_min = 2,
38 .channels_max = 2,
39 .buffer_bytes_max = 64*1024,
40 .period_bytes_min = 64,
41 .period_bytes_max = DMA_BUF_SIZE,
42 .periods_min = 2,
43 .periods_max = 255,
44 .fifo_size = 0,
45 };
PCM接口的主要函数被封装在snd_pcm_ops结构体内,UDA1341 ALSA驱动对snd_pcm_ops结构体的定义如代码清单17.35。
代码清单17.35 UDA1341 ALSA驱动PCM接口snd_pcm_ops结构体
1 static struct snd_pcm_ops snd_card_sa11xx_uda1341_playback_ops =
2 {
3 .open = snd_card_sa11xx_uda1341_open,
4 .close = snd_card_sa11xx_uda1341_close,
5 .ioctl = snd_pcm_lib_ioctl,
6 .hw_params = snd_sa11xx_uda1341_hw_params,
7 .hw_free = snd_sa11xx_uda1341_hw_free,
8 .prepare = snd_sa11xx_uda1341_prepare,
9 .trigger = snd_sa11xx_uda1341_trigger,
10 .pointer = snd_sa11xx_uda1341_pointer,
11 };
12
13 static struct snd_pcm_ops snd_card_sa11xx_uda1341_capture_ops =
14 {
15 .open = snd_card_sa11xx_uda1341_open,
16 .close = snd_card_sa11xx_uda1341_close,
17 .ioctl = snd_pcm_lib_ioctl,
18 .hw_params = snd_sa11xx_uda1341_hw_params,
19 .hw_free = snd_sa11xx_uda1341_hw_free,
20 .prepare = snd_sa11xx_uda1341_prepare,
21 .trigger = snd_sa11xx_uda1341_trigger,
22 .pointer = snd_sa11xx_uda1341_pointer,
23 };
代码清单17.33第25行调用的snd_card_sa11xx_uda1341_pcm()即是PCM组件的“构造函数”,其实现如代码清单17.36。
代码清单17.36 UDA1341 ALSA驱动PCM组件构造函数
1 static int __init snd_card_sa11xx_uda1341_pcm(struct sa11xx_uda1341 *sa11xx_uda1341, int device)
2 {
3 struct snd_pcm *pcm;
4 int err;
5 /* 新建pcm设备,playback和capture都为1个 */
6 if ((err = snd_pcm_new(sa11xx_uda1341-》card, “UDA1341 PCM”, device, 1, 1, &pcm)) 《 0)
7 return err;
8
9 /* 建立初始缓冲区并设置dma_type为isa */
10 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
11 snd_dma_isa_data(),
12 64*1024, 64*1024);
13 /* 设置pcm的操作 */
14 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, snd_card_sa11xx_uda1341_playback_ops);
15 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_card_sa11xx_uda1341_capture_ops);
16 pcm-》private_data = sa11xx_uda1341;
17 pcm-》info_flags = 0;
18 strcpy(pcm-》name, “UDA1341 PCM”);
19
20 sa11xx_uda1341_audio_init(sa11xx_uda1341);
21
22 /* 设置DMA控制器 */
23 audio_dma_request(&sa11xx_uda1341-》s[SNDRV_PCM_STREAM_PLAYBACK], audio_dma_callback);
24 audio_dma_request(&sa11xx_uda1341-》s[SNDRV_PCM_STREAM_CAPTURE], audio_dma_callback);
25
26 sa11xx_uda1341-》pcm = pcm;
27
28 return 0;
29 }
在snd_pcm_ops结构体的打开成员函数中,需要根据具体的子流赋值snd_pcm_runtime的hw,如代码清单17.37。
代码清单17.37 UDA1341 ALSA驱动snd_pcm_ops结构体open/close成员函数
1 static int snd_card_sa11xx_uda1341_open(struct snd_pcm_substream *substream)
2 {
3 struct sa11xx_uda1341 *chip = snd_pcm_substream_chip(substream);
4 struct snd_pcm_runtime *runtime = substream-》runtime;
5 int stream_id = substream-》pstr-》stream;
6 int err;
7
8 chip-》s[stream_id].stream = substream;
9
10 if (stream_id == SNDRV_PCM_STREAM_PLAYBACK) //播放子流
11 runtime-》hw = snd_sa11xx_uda1341_playback;
12 else //录音子流
13 runtime-》hw = snd_sa11xx_uda1341_capture;
14 if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) 《 0)
15 return err;
16 if ((err = snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,&hw_constraints_rates)) 《 0)
17 return err;
18
19 return 0;
20 }
21
22 static int snd_card_sa11xx_uda1341_close(struct snd_pcm_substream *substream)
23 {
24 struct sa11xx_uda1341 *chip = snd_pcm_substream_chip(substream);
25
26 chip-》s[substream-》pstr-》stream].stream = NULL;
27 return 0;
28 }
在snd_pcm_ops结构体的trigger()成员函数中,控制播放和录音的启/停、挂起/恢复,如代码清单17.38。
代码清单17.38 UDA1341 ALSA驱动snd_pcm_ops结构体trigger成员函数
1 static int snd_sa11xx_uda1341_trigger(struct snd_pcm_substream *substream, int
2 cmd)
3 {
4 struct sa11xx_uda1341 *chip = snd_pcm_substream_chip(substream);
5 int stream_id = substream-》pstr-》stream;
6 struct audio_stream *s = &chip-》s[stream_id];
7 struct audio_stream *s1 = &chip-》s[stream_id ^ 1];
8 int err = 0;
9
10 /* 注意本地中断已经被中间层代码禁止 */
11 spin_lock(&s-》dma_lock);
12 switch (cmd)
13 {
14 case SNDRV_PCM_TRIGGER_START://开启PCM
15 if (stream_id == SNDRV_PCM_STREAM_CAPTURE && !s1-》active) //开启录音,不在播放
16 {
17 s1-》tx_spin = 1;
18 audio_process_dma(s1);
19 }
20 else
21 {
22 s-》tx_spin = 0;
23 }
24
25 /* 被请求的流启动 */
26 s-》active = 1;
27 audio_process_dma(s);
28 break;
29 case SNDRV_PCM_TRIGGER_STOP:
30 /* 被请求的流关闭 */
31 audio_stop_dma(s);
32 if (stream_id == SNDRV_PCM_STREAM_PLAYBACK && s1-》active) //在录音时开启播放
33 {
34 s-》tx_spin = 1;
35 audio_process_dma(s); //启动DMA
36 }
37 else
38 {
39 if (s1-》tx_spin)
40 {
41 s1-》tx_spin = 0;
42 audio_stop_dma(s1); //停止DMA
43 }
44 }
45
46 break;
47 case SNDRV_PCM_TRIGGER_SUSPEND: //挂起
48 s-》active = 0;
49 #ifdef HH_VERSION
50 sa1100_dma_stop(s-》dmach); //停止DMA
51 #endif
52 s-》old_offset = audio_get_dma_pos(s) + 1;
53 #ifdef HH_VERSION
54 sa1100_dma_flush_all(s-》dmach);
55 #endif
56 s-》periods = 0;
57 break;
58 case SNDRV_PCM_TRIGGER_RESUME: //恢复
59 s-》active = 1;
60 s-》tx_spin = 0;
61 audio_process_dma(s); //开启DMA
62 if (stream_id == SNDRV_PCM_STREAM_CAPTURE && !s1-》active)
63 {
64 s1-》tx_spin = 1;
65 audio_process_dma(s1);
66 }
67 break;
68 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: //暂停
69 #ifdef HH_VERSION
70 sa1100_dma_stop(s-》dmach); //停止DMA
71 #endif
72 s-》active = 0;
73 if (stream_id == SNDRV_PCM_STREAM_PLAYBACK)
74 {
75 if (s1-》active)
76 {
77 s-》tx_spin = 1;
78 s-》old_offset = audio_get_dma_pos(s) + 1;
79 #ifdef HH_VERSION
80 sa1100_dma_flush_all(s-》dmach);
81 #endif
82 audio_process_dma(s); //开启DMA
83 }
84 }
85 else
86 {
87 if (s1-》tx_spin)
88 {
89 s1-》tx_spin = 0;
90 #ifdef HH_VERSION
91 sa1100_dma_flush_all(s1-》dmach);
92 #endif
93 }
94 }
95 break;
96 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: //暂停释放
97 s-》active = 1;
98 if (s-》old_offset)
99 {
100 s-》tx_spin = 0;
101 audio_process_dma(s);
102 break;
103 }
104 if (stream_id == SNDRV_PCM_STREAM_CAPTURE && !s1-》active)
105 {
106 s1-》tx_spin = 1;
107 audio_process_dma(s1);
108 }
109 #ifdef HH_VERSION
110 sa1100_dma_resume(s-》dmach);
111 #endif
112 break;
113 default:
114 err = - EINVAL;
115 break;
116 }
117 spin_unlock(&s-》dma_lock);
118 return err;
119 }
snd_pcm_ops结构体中其它的hw_params()、prepare()、pointer()等成员函数实现较为简单,这里不再赘述。
17.6.3 控制接口的实现
代码清单17.33第21行调用的snd_chip_uda1341_mixer_new()可以认为是UDA1341 ALSA驱动mixer控制组件的“构造函数”,其中会创建的控制元素的定义如代码清单17.39,包括一些枚举和单值元素。
代码清单17.39 UDA1341 ALSA驱动控制接口snd_kcontrol_new结构体
1 #define UDA1341_SINGLE(xname, where, reg, shift, mask, invert) /
2 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_uda1341_info_single, /
3 .get = snd_uda1341_get_single, .put = snd_uda1341_put_single, /
4 .private_value = where | (reg 《《 5) | (shift 《《 9) | (mask 《《 12) | (invert 《《 18) /
5 }
6
7 #define UDA1341_ENUM(xname, where, reg, shift, mask, invert) /
8 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_uda1341_info_enum, /
9 .get = snd_uda1341_get_enum, .put = snd_uda1341_put_enum, /
10 .private_value = where | (reg 《《 5) | (shift 《《 9) | (mask 《《 12) | (invert 《《 18) /
11 }
12
13 static struct snd_kcontrol_new snd_uda1341_controls[] =
14 {
15 UDA1341_SINGLE(“Master Playback Switch”, CMD_MUTE, data0_2, 2, 1, 1),
16 UDA1341_SINGLE(“Master Playback Volume”, CMD_VOLUME, data0_0, 0, 63, 1),
17
18 UDA1341_SINGLE(“Bass Playback Volume”, CMD_BASS, data0_1, 2, 15, 0),
19 UDA1341_SINGLE(“Treble Playback Volume”, CMD_TREBBLE, data0_1, 0, 3, 0),
20
21 UDA1341_SINGLE(“Input Gain Switch”, CMD_IGAIN, stat1, 5, 1, 0),
22 UDA1341_SINGLE(“Output Gain Switch”, CMD_OGAIN, stat1, 6, 1, 0),
23
24 UDA1341_SINGLE(“Mixer Gain Channel 1 Volume”, CMD_CH1, ext0, 0, 31, 1),
25 UDA1341_SINGLE(“Mixer Gain Channel 2 Volume”, CMD_CH2, ext1, 0, 31, 1),
26
27 UDA1341_SINGLE(“Mic Sensitivity Volume”, CMD_MIC, ext2, 2, 7, 0),
28
29 UDA1341_SINGLE(“AGC Output Level”, CMD_AGC_LEVEL, ext6, 0, 3, 0),
30 UDA1341_SINGLE(“AGC Time Constant”, CMD_AGC_TIME, ext6, 2, 7, 0),
31 UDA1341_SINGLE(“AGC Time Constant Switch”, CMD_AGC, ext4, 4, 1, 0),
32
33 UDA1341_SINGLE(“DAC Power”, CMD_DAC, stat1, 0, 1, 0),
34 UDA1341_SINGLE(“ADC Power”, CMD_ADC, stat1, 1, 1, 0),
35
36 UDA1341_ENUM(“Peak detection”, CMD_PEAK, data0_2, 5, 1, 0),
37 UDA1341_ENUM(“De-emphasis”, CMD_DEEMP, data0_2, 3, 3, 0),
38 UDA1341_ENUM(“Mixer mode”, CMD_MIXER, ext2, 0, 3, 0),
39 UDA1341_ENUM(“Filter mode”, CMD_FILTER, data0_2, 0, 3, 0),
40
41 UDA1341_2REGS(“Gain Input Amplifier Gain (channel 2)”, CMD_IG, ext4, ext5, 0, 0, 3, 31, 0),
42 };
从上述代码中宏UDA1341_SINGLE和UDA1341_ENUM的定义可知,单值元素的info()、get()、put()成员函数分别为 snd_uda1341_info_single()、snd_uda1341_get_single()和 snd_uda1341_put_single();枚举元素的info()、get()、put()成员函数分别为 snd_uda1341_info_enum()、snd_uda1341_get_enum()、和snd_uda1341_put_enum()。作为例子,代码清单17.40给出了单值元素相关函数的实现。
代码清单17.40 UDA1341 ALSA驱动控制接口单值元素info/get/put函数
1 static int snd_uda1341_info_single(struct snd_kcontrol *kcontrol, struct
2 snd_ctl_elem_info *uinfo)
3 {
4 int mask = (kcontrol-》private_value 》》 12) &63;
5
6 uinfo-》type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN :
7 SNDRV_CTL_ELEM_TYPE_INTEGER;
8 uinfo-》count = 1; //数量为1
9 uinfo-》value.integer.min = 0; //最小值
10 uinfo-》value.integer.max = mask; //最大值
11 return 0;
12 }
13
14 static int snd_uda1341_get_single(struct snd_kcontrol *kcontrol, struct
15 snd_ctl_elem_value *ucontrol)
16 {
17 struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
18 struct uda1341 *uda = clnt-》driver_data;
19 int where = kcontrol-》private_value &31;
20 int mask = (kcontrol-》private_value 》》 12) &63;
21 int invert = (kcontrol-》private_value 》》 18) &1;
22
23 ucontrol-》value.integer.value[0] = uda-》cfg[where]; //返回给ucontrol
24 if (invert) //如果反转
25 ucontrol-》value.integer.value[0] = mask - ucontrol-》value.integer.value[0];
26
27 return 0;
28 }
29
30 static int snd_uda1341_put_single(struct snd_kcontrol *kcontrol, struct
31 snd_ctl_elem_value *ucontrol)
32 {
33 struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
34 struct uda1341 *uda = clnt-》driver_data;
35 int where = kcontrol-》private_value &31;
36 int reg = (kcontrol-》private_value 》》 5) &15;
37 int shift = (kcontrol-》private_value 》》 9) &7;
38 int mask = (kcontrol-》private_value 》》 12) &63;
39 int invert = (kcontrol-》private_value 》》 18) &1;
40 unsigned short val;
41
42 val = (ucontrol-》value.integer.value[0] &mask);//从ucontrol获得值
43 if (invert) //如果反转
44 val = mask - val;
45
46 uda-》cfg[where] = val;
47 return snd_uda1341_update_bits(clnt, reg, mask, shift, val, FLUSH);//更新位
48 }
17.7实例3:PXA255+AC97 ALSA驱动
Intel 公司的XScale PXA255是一款基于ARM5TE内核技术的嵌入式处理器。它提供了符合AC97 rev2.0标准的AC97控制单元(ACUNIT)和音频控制连接(AC-Link)。ACUNIT就是CODEC控制器,它通过AC-Link连接和控制AC97 CODEC芯片,例如Philips公司出品的一款符合AC97标准的多功能CODEC芯片UCB1400。它不仅是一枚CODEC芯片,还集成了触摸和能量管理两个功能模块,在嵌入式系统中应用广泛。
AC-Link 连接了ACUNIT 和UCB1400Codec,只要对ACUNIT寄存器操作就可以实现同UCBI400之间的数据传输。通过ACUNIT还可读写CODEC内部寄存器,实现对音频采样和混音处理的控制。当然这些读写操作也是经由AC-Link传输的。
Intel Xscale PXA255提供了16个DMA通道,可以很方便的为外围设备提供数据传送。ACUNIT也为CODEC的立体声输入输出和话筒输入提供了独立的16 bit数据通道。每个通道都有一个专门的FIFO。
由于它是一个标准的AC97设备,因此,其驱动的控制部分实现可以说是非常的简单,按照17.4.4节的要求,需要实现AC97 codec寄存器读写的硬件级函数pxa2xx_ac97_read()和pxa2xx_ac97_write(),并在模块初始化时注册相关的AC97 组件,如代码清单17.41。
代码清单17.41 PXA255连接AC97 codec ALSA驱动控制组件
1 static unsigned short pxa2xx_ac97_read(struct snd_ac97 *ac97, unsigned short
2 reg)
3 {
4 unsigned short val = - 1;
5 volatile u32 *reg_addr;
6
7 down(&car_mutex);
8
9 /* 设置首/次codec空间 */
10 reg_addr = (ac97-》num &1) ? &SAC_REG_BASE: &PAC_REG_BASE;
11 reg_addr += (reg 》》 1);
12
13 /* 通过ac97 link读 */
14 GSR = GSR_CDONE | GSR_SDONE;
15 gsr_bits = 0;
16 val = *reg_addr;
17 if (reg == AC97_GPIO_STATUS)
18 goto out;
19 if (wait_event_timeout(gsr_wq, (GSR | gsr_bits) &GSR_SDONE, 1) 《= 0
20 && !((GSR | gsr_bits) &GSR_SDONE))
21 //等待
22 {
23 printk(KERN_ERR “%s: read error (ac97_reg=%d GSR=%#lx)/n”,
24 __FUNCTION__,reg, GSR | gsr_bits);
25 val = - 1;
26 goto out;
27 }
28
29 /* 置数据有效 */
30 GSR = GSR_CDONE | GSR_SDONE;
31 gsr_bits = 0;
32 val = *reg_addr;
33 /* 但是我们已经开启另一个周期。。。 */
34 wait_event_timeout(gsr_wq, (GSR | gsr_bits) &GSR_SDONE, 1);
35
36 out: up(&car_mutex);
37 return val;
38 }
39
40 static void pxa2xx_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
41 unsigned short val)
42 {
43 volatile u32 *reg_addr;
44
45 down(&car_mutex);
46
47 /*设置首/次codec空间*/
48 reg_addr = (ac97-》num &1) ? &SAC_REG_BASE: &PAC_REG_BASE;
49 reg_addr += (reg 》》 1);
50
51 GSR = GSR_CDONE | GSR_SDONE;
52 gsr_bits = 0;
53 *reg_addr = val; //通过ac97 link写
54 if (wait_event_timeout(gsr_wq, (GSR | gsr_bits) &GSR_CDONE, 1) 《= 0
55 && !((GSR | gsr_bits) &GSR_CDONE))
56 printk(KERN_ERR “%s: write error (ac97_reg=%d GSR=%#lx)/n”,
57 __FUNCTION__,reg, GSR | gsr_bits);
58
59 up(&car_mutex);
60 }
61
62 static int pxa2xx_ac97_probe(struct platform_device *dev)
63 {
64 struct snd_card *card;
65 struct snd_ac97_bus *ac97_bus;
66 struct snd_ac97_template ac97_template;
67 int ret;
68
69 ret = - ENOMEM;
70 /* 新建card */
71 card = snd_card_new(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1, THIS_MODULE, 0);
72 if (!card)
73 goto err;
74 card-》dev = &dev-》dev;
75 strncpy(card-》driver, dev-》dev.driver-》name, sizeof(card-》driver));
76
77 /* 构造pcm组件 */
78 ret = pxa2xx_pcm_new(card, &pxa2xx_ac97_pcm_client, &pxa2xx_ac97_pcm);
79 if (ret)
80 goto err;
81
82 /* 申请中断 */
83 ret = request_irq(IRQ_AC97, pxa2xx_ac97_irq, 0, “AC97”, NULL);
84 if (ret 《 0)
85 goto err;
86
87 。。。
88
89 /* 初始化ac97 bus */
90 ret = snd_ac97_bus(card, 0, &pxa2xx_ac97_ops, NULL, &ac97_bus);
91 if (ret)
92 goto err;
93 memset(&ac97_template, 0, sizeof(ac97_template));
94 ret = snd_ac97_mixer(ac97_bus, &ac97_template, &pxa2xx_ac97_ac97);
95 if (ret)
96 goto err;
97 。。。
98
99 /* 注册card */
100 ret = snd_card_register(card);
101 if (ret == 0)
102 {
103 platform_set_drvdata(dev, card);
104 return 0;
105 }
106
107 err: if (card)
108 snd_card_free(card);
109 。。。
110
111 returns ret;
112 }
17.8总结
音频设备接口包括PCM、IIS和AC97几种,分别适用于不同的应用场合。针对音频设备,Linux内核中包含了2类音频设备驱动框架,OSS和 ALSA,前者包含dsp和mixer字符设备接口,在用户空间的编程中,完全使用文件操作;后者以card和组件(pcm、mixer等)为主线,在用户空间的编程中不使用文件接口而使用alsalib。
在音频设备驱动中,几乎必须使用DMA,而DMA的缓冲区会被分割成一个一个的段,每次 DMA操作进行其中的一段。OSS驱动的阻塞读写具有流控能力,在用户空间不需要进行流量方面的定时工作,但是它需要及时的写(播放)和读(录音),以免出现缓冲区的underflow或overflow。
评论
查看更多