电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电子发烧友网>可编程逻辑>FPGA/ASIC技术>相比GPU和GPP,FPGA是深度学习的未来?

相比GPU和GPP,FPGA是深度学习的未来?

收藏

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

相关推荐

FPGA比CPU和GPU快的原理是什么

本文首先阐述了FPGA的原理了,其次分析了FPGA比CPU和GPU快的原理,最后阐述了CPU与GPU的区别。
2018-05-31 09:00:2915956

FPGA如何击败GPUGPP

本文从硬件加速的视角考察深度学习FPGA,指出有哪些趋势和创新使得这些技术相互匹配,并激发对FPGA如何帮助深度学习领域发展的探讨。
2016-03-24 13:41:062481

深度学习框架只为GPU? 答案在这里

目前大多数的机器学习是在处理器上完成的,大多数机器学习软件会针对GPU进行更多的优化,甚至有人认为学习加速必须在GPU上才能完成,但事实上无论是运行机器学习的处理器还是优化的深度学习框架,都不
2018-03-14 18:29:098148

深度学习显卡选型指南:关于GPU选择的一般建议

当一个人开始涉足深度学习时,拥有一块高速GPU是一件很重要的事,因为它能帮人更高效地积累实践经验,而经验是掌握专业知识的关键,能打开深入学习新问题的大门。如果没有这种快速的反馈,我们从错误中汲取经验的时间成本就太高了,同时,过长的时间也可能会让人感到挫败和沮丧。
2018-08-24 09:11:2580990

FPGA在做深度学习加速时需要的技能

的主要有三种不同架构的器件种类:CPU,GPU,AI芯片/FPGA。CPU是一个通用架构芯片,其计算能力和数据带宽相对受到限制,面对大计算量的深度学习就显露出其缺点了。GPU含有大量的计算阵列,可以适用于大规模运算,而且其生态较为成熟和完整,所以现在包
2020-10-10 16:25:433349

FPGA上部署深度学习的算法模型的方法以及平台

今天给大家介绍一下FPGA上部署深度学习的算法模型的方法以及平台。希望通过介绍,算法工程师在FPGA的落地上能“稍微”缓和一些,小白不再那么迷茫。
2022-07-22 10:14:443535

相比CPU、GPU、ASIC,FPGA有什么优势

CPU、GPU 都属于冯·诺依曼结构,指令译码执行、共享内存。FPGA 之所以比 CPU 甚至 GPU 能效高,本质上是无指令、无需共享内存的体系结构带来的福利。
2022-11-22 16:00:051256

3GPP的概念是什么?

3GPP的目标是实现由2G网络到3G网络的平滑过渡,保证未来技术的后向兼容性,支持轻松建网及系统间的漫游和兼容性。
2019-09-20 09:10:03

FPGA 超越 GPU,问鼎下一代深度学习主引擎

的合著者之一,说:“深度学习是AI中最令人兴奋的领域,因为我们已经看到了深度学习带来的巨大进步和大量应用。虽然AI 和DNN 研究倾向于使用 GPU,但我们发现应用领域和英特尔下一代FPGA 架构之间
2017-04-27 14:10:12

FPGA为什么快?

任务中:在数据中心,FPGA相比GPU的核心优势在于延迟。FPGA为什么比GPU的延迟低很多?本质上是体系结构的区别。FPGA同时拥有流水线并行和数据并行,而GPU几乎只有数据并行(流水线深度受限
2018-08-16 09:54:23

FPGA和CPU、GPU有什么区别?为什么越来越重要?

和 CPU 互联,以完成高并行的计算加速。 图6:将CPU的核心简化以加快执行速度,是GPU设计的思想 FPGA相比CPU的巨大优势在于确定性的低时延,这是架构差异造成的。CPU 的时延
2023-11-09 14:09:46

FPGA深度学习应用中或将取代GPU

现场可编程门阵列 (FPGA) 解决了 GPU 在运行深度学习模型时面临的许多问题 在过去的十年里,人工智能的再一次兴起使显卡行业受益匪浅。英伟达 (Nvidia) 和 AMD 等公司的股价也大幅
2024-03-21 15:19:45

正在加载...