卷积神经网络 的一些技巧总结如下:
1. 使用卷积层极大地减小了全连接层中的参数的数目,使学习的问题更容易
2. 使用更多强有力的规范化技术(尤其是弃权和卷积)来减小过度拟合,
3. 使用修正线性单元而不是S型神经元,来加速训练-依据经验,通常是3-5倍,
4. 使用GPU来计算
5. 利用充分大的数据集,避免过拟合
6. 使用正确的代价函数,避免学习减速
7. 使用好的权重初始化,避免因为神经元饱和引起的学习减速
- 卷积神经网络(CNN)的参数优化方法
相关推荐
什么是卷积神经网络?完整的卷积神经网络(CNNS)解析
卷积神经网络(CNN)是一种特殊类型的神经网络,在图像上表现特别出色。卷积神经网络由Yan LeCun在1998年提出,可以识别给定输入图像中存在的数字。
2022-08-10 11:49:0618287
使用PyTorch深度解析卷积神经网络
卷积神经网络(CNN)是一种特殊类型的神经网络,在图像上表现特别出色。卷积神经网络由Yan LeCun在1998年提出,可以识别给定输入图像中存在的数字。
2022-09-21 10:12:50636
卷积神经网络(CNN)的工作原理 神经网络的训练过程
前文《卷积神经网络简介:什么是机器学习?》中,我们比较了在微控制器中运行经典线性规划程序与运行CNN的区别,并展示了CNN的优势。我们还探讨了CIFAR网络,该网络可以对图像中的猫、房子或自行车等对象进行分类,还可以执行简单的语音识别。本文重点解释如何训练这些神经网络以解决实际问题。
2023-09-05 10:19:43865
卷积神经网络如何使用
卷积神经网络(CNN)究竟是什么,鉴于神经网络在工程上经历了曲折的历史,您为什么还会在意它呢? 对于这些非常中肯的问题,我们似乎可以给出相对简明的答案。
2019-07-17 07:21:50
卷积神经网络模型发展及应用
十余年来快速发展的崭新领域,越来越受到研究者的关注。卷积神经网络(CNN)模型是深度学习模型中最重要的一种经典结构,其性能在近年来深度学习任务上逐步提高。由于可以自动学习样本数据的特征表示,卷积
2022-08-02 10:39:39
卷积神经网络简介:什么是机器学习?
抽象人工智能 (AI) 的世界正在迅速发展,人工智能越来越多地支持以前无法实现或非常难以实现的应用程序。本系列文章解释了卷积神经网络 (CNN) 及其在 AI 系统中机器学习中的重要性。CNN 是从
2023-02-23 20:11:10
神经网络解决方案让自动驾驶成为现实
的系统。在训练阶段,开发商利用诸如 Caffe 等的框架对 CNN 进行训练及优化。参考图像数据库用于确定网络中神经元的最佳权重参数。训练结束即可采用传统方法在 CPU、GPU 或 FPGA 上生成网络
2017-12-21 17:11:34
【PYNQ-Z2申请】基于PYNQ的卷积神经网络加速
,得到训练参数2、利用开发板arm与FPGA联合的特性,在arm端实现图像预处理已经卷积核神经网络的池化、激活函数和全连接,在FPGA端实现卷积运算3、对整个系统进行调试。4、在基本实现系统的基础上
2018-12-19 11:37:22
【uFun试用申请】基于cortex-m系列核和卷积神经网络算法的图像识别
①根据文档,对uFun快速入门②通过学习uFun的软件和系统,了解实际应用案例,熟悉开发过程③基于uFun的卷积神经网络项目筹备(分析软硬件需求)④项目开展,按时间计划实施。⑤项目调试,优化,分享。预计
2019-04-09 14:12:24
从AlexNet到MobileNet,带你入门深度神经网络
思维导图如下:发展历程DNN-定义和概念在卷积神经网络中,卷积操作和池化操作有机的堆叠在一起,一起组成了CNN的主干。同样是受到猕猴视网膜与视觉皮层之间多层网络的启发,深度神经网络架构架构应运而生,且
2018-05-08 15:57:47
可分离卷积神经网络在 Cortex-M 处理器上实现关键词识别
我们可以对神经网络架构进行优化,使之适配微控制器的内存和计算限制范围,并且不会影响精度。我们将在本文中解释和探讨深度可分离卷积神经网络在 Cortex-M 处理器上实现关键词识别的潜力。关键词识别
2021-07-26 09:46:37
基于赛灵思FPGA的卷积神经网络实现设计
FPGA 上实现卷积神经网络 (CNN)。CNN 是一类深度神经网络,在处理大规模图像识别任务以及与机器学习类似的其他问题方面已大获成功。在当前案例中,针对在 FPGA 上实现 CNN 做一个可行性研究
2019-06-19 07:24:41
如何利用卷积神经网络去更好地控制巡线智能车呢
巡线智能车控制中的CNN网络有何应用?嵌入式单片机中的神经网络该怎样去使用?如何利用卷积神经网络去更好地控制巡线智能车呢?
2021-12-21 07:47:24
如何移植一个CNN神经网络到FPGA中?
)第二步:使用Lattice sensAI 软件编译已训练好的神经网络,定点化网络参数。该软件会根据神经网络结构和预设的FPGA资源进行分析并给出性能评估报告,此外用户还可以在软件中做
2020-11-26 07:46:03
非局部神经网络,打造未来神经网络基本组件
时空记忆。增加了几个非局部模块后,我们的“非局部神经网络”结构能比二维和三维卷积网络在视频分类中取得更准确的结果。另外,非局部神经网络在计算上也比三维卷积神经网络更加经济。我们在 Kinetics
2018-11-12 14:52:50
详解卷积神经网络的复杂机制?
随着复杂和高效的神经网络架构的出现,卷积神经网络(CNN)的性能已经优于传统的数字图像处理方法,如 SIFT 和 SURF。在计算机视觉领域,学者们开始将研究重点转移到 CNN,并相信 CNN
2017-10-09 11:16:010
卷积神经网络(CNN)的简单介绍及代码实现
卷积神经网络(CNN)的基础介绍见 ,这里主要以代码实现为主。 CNN是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。 以MNIST作为数据库,仿照LeNet-5
2017-11-15 12:27:3918947
【科普】卷积神经网络(CNN)基础介绍
对卷积神经网络的基础进行介绍,主要内容包括卷积神经网络概念、卷积神经网络结构、卷积神经网络求解、卷积神经网络LeNet-5结构分析、卷积神经网络注意事项。一、卷积神经网络概念 上世纪60年代
2017-11-16 01:00:0210692
卷积神经网络检测脸部关键点的教程之卷积神经网络训练与数据扩充
上一次我们用了单隐层的神经网络,效果还可以改善,这一次就使用CNN。 卷积神经网络 上图演示了卷积操作 LeNet-5式的卷积神经网络,是计算机视觉领域近期取得的巨大突破的核心。卷积层和之前的全连接
2017-11-16 11:45:072011
卷积神经网络CNN图解
之前在网上搜索了好多好多关于CNN的文章,由于网络上的文章很多断章取义或者描述不清晰,看了很多youtobe上面的教学视频还是没有弄懂,最后经过痛苦漫长的煎熬之后对于神经网络和卷积有了粗浅的了解
2017-11-16 13:18:4056168
卷积神经网络CNN架构分析-LeNet
对于神经网络和卷积有了粗浅的了解,关于CNN 卷积神经网络,需要总结深入的知识有很多:人工神经网络 ANN卷积神经网络CNN 卷积神经网络CNN-BP算法卷积神经网络CNN-caffe应用卷积神经网络CNN-LetNet分析 LetNet网络.
2017-11-16 13:28:012562
卷积神经网络的振动信号模态参数识别
针对现有的时域模态参数识别方法大多存在难定阶和抗噪性差的问题,提出一种无监督学习的卷积神经网络(CNN)的振动信号模态识别方法。该算法在卷积神经网络的基础上进行改进。首先,将应用于二维图像处理的卷积
2017-12-05 14:39:135
基于卷积神经网络的图像标注模型
,构建一个多标签学习的卷积神经网络( CNN-MLL)模型,然后利用图像标注词间的相关性对网络模型输出结果进行改善。通过在IAPR TC-12标准图像标注数据集上对比了其他传统方法,实验得出,基于采用均方误差函数的卷积神经网络( CN
2017-12-07 14:30:504
卷积神经网络的基本结构和运行原理
图像特征的提取与分类一直是计算机强觉领域的一个基础而重要的研究方向。卷积神经网络( Convolutional Neural Network,CNN)提供了一种端到端的学习模型,模型中的参数可以通过
2017-12-12 11:45:310
3D卷积神经网络的手势识别
传统2D卷积神经网络对于视频连续帧图像的特征提取容易丢失目标时间轴上的运动信息,导致识别准确度较低。为此,提出一种基于多列深度3D卷积神经网络(3D CNN)的手势识别方法。采用3D卷积核对
2018-01-30 13:59:192
卷积神经网络CNN架构分析 - LeNet
之前在网上搜索了好多好多关于CNN的文章,由于网络上的文章很多断章取义或者描述不清晰,看了很多youtobe上面的教学视频还是没有弄懂,最后经过痛苦漫长的煎熬之后对于神经网络和卷积有了粗浅的了解
2018-10-02 07:41:01544
卷积神经网络的主要两个特征
卷积神经网络(CNN)是一种目前计算机视觉领域广泛使用的深度学习网络,与传统的人工神经网络结构不同,它包含有非常特殊的卷积层和降采样层(有些文章和书籍里又称之为池化层、汇合层),其中卷积层和前一层采用局部连接和权值共享的方式进行连接,从而大大降低了参数数量。
2020-05-04 18:24:0013077
神经网络到卷积神经网络的原理
卷积神经网络 (Convolutional Neural Network, CNN) 是一种源于人工神经网络(Neural Network, NN)的深度机器学习方法,近年来在图像识别领域取得了巨大
2021-03-25 09:45:217
想了解卷积神经网络看这篇就够了
关于CNN, 第1部分:卷积神经网络的介绍 CNN是什么?:它们如何工作,以及如何在Python中从头开始构建一个CNN。 在过去的几年里,卷积神经网络(CNN)引起了人们的广泛关注,尤其是
2021-07-27 14:50:161705
什么是神经网络?什么是卷积神经网络?
在介绍卷积神经网络之前,我们先回顾一下神经网络的基本知识。就目前而言,神经网络是深度学习算法的核心,我们所熟知的很多深度学习算法的背后其实都是神经网络。
2023-02-23 09:14:442252
卷积神经网络简介:什么是机器学习?
随着人工智能(AI)技术的快速发展,AI可以越来越多地支持以前无法实现或者难以实现的应用。本文基于此解释了卷积神经网络(CNN)及其对人工智能和机器学习的意义。CNN是一种能够从复杂数据中提取特征
2023-03-11 23:10:04523
干货速来!详析卷积神经网络(CNN)的特性和应用
前文《 卷积神经网络简介:什么是机器学习? 》中,我们比较了在微控制器中运行经典线性规划程序与运行CNN的区别,并展示了CNN的优势。我们还探讨了CIFAR网络,该网络可以对图像中的猫、房子或自行车
2023-03-27 22:50:02556
卷积神经网络包括哪几层
卷积神经网络包括哪几层 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,通常被应用于图像识别和语音识别等领域。它的设计灵感来源于生物神经
2023-08-17 16:30:272138
卷积神经网络原理:卷积神经网络模型和卷积神经网络算法
卷积神经网络原理:卷积神经网络模型和卷积神经网络算法 卷积神经网络(Convolutional Neural Network,CNN)是一种基于深度学习的人工神经网络,是深度学习技术的重要应用之
2023-08-17 16:30:30806
卷积神经网络结构
卷积神经网络结构 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,常用于图像处理、自然语言处理等领域中。它是一种深度学习(Deep
2023-08-17 16:30:35804
卷积神经网络python代码
卷积神经网络python代码 ; 卷积神经网络(Convolutional Neural Network,简称CNN)是一种可以在图像处理和语音识别等领域中很好地应用的神经网络。它的原理是通过不断
2023-08-21 16:41:35614
python卷积神经网络cnn的训练算法
python卷积神经网络cnn的训练算法 卷积神经网络(Convolutional Neural Network,CNN)一直是深度学习领域重要的应用之一,被广泛应用于图像、视频、语音等领域
2023-08-21 16:41:37859
卷积神经网络详解 卷积神经网络包括哪几层及各层功能
多维数组而设计的神经网络。CNN不仅广泛应用于计算机视觉领域,还在自然语言处理、语音识别和游戏等领域有广泛应用。下文将详细地介绍CNN的各层及其功能。 1.卷积层(Convolutional
2023-08-21 16:41:404397
卷积神经网络的应用 卷积神经网络通常用来处理什么
卷积神经网络的应用 卷积神经网络通常用来处理什么 卷积神经网络(Convolutional Neural Network,简称CNN)是一种在神经网络领域内广泛应用的神经网络模型。相较于传统
2023-08-21 16:41:453485
卷积神经网络概述 卷积神经网络的特点 cnn卷积神经网络的优点
卷积神经网络概述 卷积神经网络的特点 cnn卷积神经网络的优点 卷积神经网络(Convolutional neural network,CNN)是一种基于深度学习技术的神经网络,由于其出色的性能
2023-08-21 16:41:481659
卷积神经网络模型有哪些?卷积神经网络包括哪几层内容?
卷积神经网络模型有哪些?卷积神经网络包括哪几层内容? 卷积神经网络(Convolutional Neural Networks,CNN)是深度学习领域中最广泛应用的模型之一,主要应用于图像、语音
2023-08-21 16:41:521305
卷积神经网络模型训练步骤
模型训练是将模型结构和模型参数相结合,通过样本数据的学习训练模型,使得模型可以对新的样本数据进行准确的预测和分类。本文将详细介绍 CNN 模型训练的步骤。 CNN 模型结构 卷积神经网络的输入
2023-08-21 16:42:00884
卷积神经网络的工作原理 卷积神经网络通俗解释
卷积神经网络的工作原理 卷积神经网络通俗解释 卷积神经网络(Convolutional Neural Network, CNN)是一种众所周知的深度学习算法,是人工智能领域中最受欢迎的技术之一
2023-08-21 16:49:242213
卷积神经网络如何识别图像
卷积神经网络如何识别图像 卷积神经网络(Convolutional Neural Network, CNN)由于其出色的图像识别能力而成为深度学习的重要组成部分。CNN是一种深度神经网络,其结构
2023-08-21 16:49:271284
卷积神经网络三大特点
卷积神经网络三大特点 卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,其具有三大特点:局部感知、参数共享和下采样。 一、局部感知 卷积神经网络
2023-08-21 16:49:323045
卷积神经网络的基本原理 卷积神经网络发展 卷积神经网络三大特点
卷积神经网络的基本原理 卷积神经网络发展历程 卷积神经网络三大特点 卷积神经网络的基本原理 卷积神经网络(Convolutional Neural Networks,CNN)是深度学习领域
2023-08-21 16:49:391127
卷积神经网络基本结构 卷积神经网络主要包括什么
卷积神经网络基本结构 卷积神经网络主要包括什么 卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛用于图像识别、自然语言处理、语音识别等领域
2023-08-21 16:57:193553
卷积神经网络层级结构 卷积神经网络的卷积层讲解
卷积神经网络层级结构 卷积神经网络的卷积层讲解 卷积神经网络(Convolutional Neural Network,CNN)是一种基于深度学习的神经网络模型,在许多视觉相关的任务中表现出色,如图
2023-08-21 16:49:423757
卷积神经网络的介绍 什么是卷积神经网络算法
卷积神经网络的介绍 什么是卷积神经网络算法 卷积神经网络涉及的关键技术 卷积神经网络(Convolutional Neural Network,CNN)是一种用于图像分类、物体识别、语音识别等领域
2023-08-21 16:49:461229
卷积神经网络算法比其他算法好吗
卷积神经网络算法比其他算法好吗 卷积神经网络(Convolutional Neural Networks, CNN)是一种用于图像识别和处理等领域的深度学习算法。相对于传统的图像识别算法,如SIFT
2023-08-21 16:49:51407
卷积神经网络算法原理
卷积神经网络算法原理 卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习(Deep Learning)的模型,它能够自动地从图片、音频、文本等数据中提
2023-08-21 16:49:54690
卷积神经网络是什么?卷积神经网络的工作原理和应用
卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习神经网络,主要用于图像和视频的识别、分类和预测,是计算机视觉领域中应用最广泛的深度学习算法之一。该网络模型可以自动从原始数据中学习有用的特征,并将其映射到相应的类别。
2023-08-21 17:03:461064
卷积神经网络算法有哪些?
卷积神经网络算法有哪些? 卷积神经网络(Convolutional Neural Network, CNN) 是一种基于多层感知器(multilayer perceptron, MLP)的深度学习
2023-08-21 16:50:01976
卷积神经网络算法的优缺点
卷积神经网络算法的优缺点 卷积神经网络是一种广泛应用于图像、语音等领域的深度学习算法。在过去几年里,CNN的研究和应用有了飞速的发展,取得了许多重要的成果,如在图像分类、目标识别、人脸识别、自然语言
2023-08-21 16:50:045470
卷积神经网络算法三大类
卷积神经网络算法三大类 卷积神经网络(Convolutional Neural Network,简称CNN)是一种常用的人工神经网络,它的主要应用领域是图像识别和计算机视觉方面。CNN通过卷积
2023-08-21 16:50:07754
卷积神经网络算法代码matlab
卷积神经网络算法代码matlab 卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习网络模型,其特点是具有卷积层(Convolutional Layer
2023-08-21 16:50:11745
卷积神经网络算法流程 卷积神经网络模型工作流程
卷积神经网络算法流程 卷积神经网络模型工作流程 卷积神经网络(Convolutional Neural Network,CNN)是一种广泛应用于目标跟踪、图像识别和语音识别等领域的深度学习模型
2023-08-21 16:50:191315
常见的卷积神经网络模型 典型的卷积神经网络模型
常见的卷积神经网络模型 典型的卷积神经网络模型 卷积神经网络(Convolutional Neural Network, CNN)是深度学习中最流行的模型之一,其结构灵活,处理图像、音频、自然语言
2023-08-21 17:11:411641
cnn卷积神经网络模型 卷积神经网络预测模型 生成卷积神经网络模型
cnn卷积神经网络模型 卷积神经网络预测模型 生成卷积神经网络模型 卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习神经网络,最初被广泛应用于计算机
2023-08-21 17:11:47680
卷积神经网络一共有几层 卷积神经网络模型三层
的神经网络,经过多层卷积、池化、非线性变换等复杂计算处理,可以从图像、音频、文本等数据中提取有用的特征。下文将详细介绍卷积神经网络的结构和原理。 CNN 的层级结构 卷积神经网络一共有三层,分别是输入层、隐藏层和输出层。隐藏层包括卷积层、池化层和全连接层。其中,隐藏
2023-08-21 17:11:533316
卷积神经网络模型的优缺点
卷积神经网络模型的优缺点 卷积神经网络(Convolutional Neural Network,CNN)是一种从图像、视频、声音和一系列多维信号中进行学习的深度学习模型。它在计算机视觉、语音识别
2023-08-21 17:15:191881
卷积神经网络主要包括哪些 卷积神经网络组成部分
卷积神经网络主要包括哪些 卷积神经网络组成部分 卷积神经网络(CNN)是一类广泛应用于计算机视觉、自然语言处理等领域的人工神经网络。它具有良好的空间特征学习能力,能够处理具有二维或三维形状的输入数据
2023-08-21 17:15:22936
cnn卷积神经网络原理 cnn卷积神经网络的特点是什么
cnn卷积神经网络原理 cnn卷积神经网络的特点是什么 卷积神经网络(Convolutional Neural Network,CNN)是一种特殊的神经网络结构,主要应用于图像处理和计算机视觉领域
2023-08-21 17:15:251025
cnn卷积神经网络算法 cnn卷积神经网络模型
cnn卷积神经网络算法 cnn卷积神经网络模型 卷积神经网络(CNN)是一种特殊的神经网络,具有很强的图像识别和数据分类能力。它通过学习权重和过滤器,自动提取图像和其他类型数据的特征。在过去的几年
2023-08-21 17:15:57941
cnn卷积神经网络matlab代码
cnn卷积神经网络matlab代码 卷积神经网络(Convolutional Neural Network, CNN)是深度学习中一种常用的神经网络结构,它是通过卷积层、池化层和全连接层等组合而成
2023-08-21 17:15:59798
cnn卷积神经网络简介 cnn卷积神经网络代码
cnn卷积神经网络简介 cnn卷积神经网络代码 卷积神经网络(Convolutional Neural Network,简称CNN)是目前深度学习领域中应用广泛的一种神经网络模型。CNN的出现
2023-08-21 17:16:131617
什么是卷积神经网络?为什么需要卷积神经网络?
卷积神经网络(Convolutional Neural Network,CNN)是一种用于处理具有类似网格结构的数据的神经网络。它广泛用于图像和视频识别、文本分类等领域。CNN可以自动从训练数据中学习出合适的特征,并以此对新输入的数据进行分类或回归等操作。
2023-08-22 18:20:371132
什么是卷积神经网络?如何MATLAB实现CNN?
卷积神经网络(CNN 或 ConvNet)是一种直接从数据中学习的深度学习网络架构。
CNN 特别适合在图像中寻找模式以识别对象、类和类别。它们也能很好地对音频、时间序列和信号数据进行分类。
2023-10-12 12:41:49422
卷积神经网络通俗理解
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度
2023-11-26 16:26:01505
卷积神经网络的优点
卷积神经网络的优点 卷积神经网络(Convolutional Neural Network,CNN)是一种基于深度学习的神经网络模型,在图像识别、语音识别、自然语言处理等领域有着广泛的应用。相比
2023-12-07 15:37:252272
评论
查看更多