PCIe总线概述
随着现代处理器技术的发展,在互连领域中,使用高速差分总线替代并行总线是大势所趋。与单端并行信号相比,高速差分信号可以使用更高的时钟频率,从而使用更少的信号线,完成之前需要许多单端并行数据信号才能达到的总线带宽。
PCI Express是新一代的总线接口。早在2001年的春季,英特尔公司就提出了要用新一代的技术取代PCI总线和多种芯片的内部连接,并称之为第三代I/O总线技术。随后在2001年底,包括Intel、AMD、DELL、IBM在内的20多家业界主导公司开始起草新技术的规范,并在2002年完成,对其正式命名为PCI Express。它采用了目前业内流行的点对点串行连接,比起PCI以及更早期的计算机总线的共享并行架构,每个设备都有自己的专用连接,不需要向整个总线请求带宽,而且可以把数据传输率提高到一个很高的频率,达到PCI所不能提供的高带宽。
PCI总线使用并行总线结构,在同一条总线上的所有外部设备共享总线带宽,而PCIe总线使用了高速差分总线,并采用端到端的连接方式,因此在每一条PCIe链路中只能连接两个设备。这使得PCIe与PCI总线采用的拓扑结构有所不同。PCIe总线除了在连接方式上与PCI总线不同之外,还使用了一些在网络通信中使用的技术,如支持多种数据路由方式,基于多通路的数据传递方式,和基于报文的数据传送方式,并充分考虑了在数据传送中出现服务质量QoS (Quality of Service)问题。
PCIe总线的基础知识
与PCI总线不同,PCIe总线使用端到端的连接方式,在一条PCIe链路的两端只能各连接一个设备,这两个设备互为是数据发送端和数据接收端。PCIe总线除了总线链路外,还具有多个层次,发送端发送数据时将通过这些层次,而接收端接收数据时也使用这些层次。PCIe总线使用的层次结构与网络协议栈较为类似。
1.1 端到端的数据传递
PCIe链路使用“端到端的数据传送方式”,发送端和接收端中都含有TX(发送逻辑)和RX(接收逻辑),其结构如图41所示。
由上图所示,在PCIe总线的物理链路的一个数据通路(Lane)中,由两组差分信号,共4根信号线组成。其中发送端的TX部件与接收端的RX部件使用一组差分信号连接,该链路也被称为发送端的发送链路,也是接收端的接收链路;而发送端的RX部件与接收端的TX部件使用另一组差分信号连接,该链路也被称为发送端的接收链路,也是接收端的发送链路。一个PCIe链路可以由多个Lane组成。
高速差分信号电气规范要求其发送端串接一个电容,以进行AC耦合。该电容也被称为AC耦合电容。PCIe链路使用差分信号进行数据传送,一个差分信号由D+和D-两根信号组成,信号接收端通过比较这两个信号的差值,判断发送端发送的是逻辑“1”还是逻辑“0”。
与单端信号相比,差分信号抗干扰的能力更强,因为差分信号在布线时要求“等长”、“等宽”、“贴近”,而且在同层。因此外部干扰噪声将被“同值”而且“同时”加载到D+和D-两根信号上,其差值在理想情况下为0,对信号的逻辑值产生的影响较小。因此差分信号可以使用更高的总线频率。
此外使用差分信号能有效抑制电磁干扰EMI(Electro Magnetic Interference)。由于差分信号D+与D-距离很近而且信号幅值相等、极性相反。这两根线与地线间耦合电磁场的幅值相等,将相互抵消,因此差分信号对外界的电磁干扰较小。当然差分信号的缺点也是显而易见的,一是差分信号使用两根信号传送一位数据;二是差分信号的布线相对严格一些。
PCIe链路可以由多条Lane组成,目前PCIe链路可以支持1、2、4、8、12、16和32个Lane,即×1、×2、×4、×8、×12、×16和×32宽度的PCIe链路。每一个Lane上使用的总线频率与PCIe总线使用的版本相关。
第1个PCIe总线规范为V1.0,之后依次为V1.0a,V1.1,V2.0和V2.1。目前PCIe总线的最新规范为V2.1,而V3.0正在开发过程中,预计在2010年发布。不同的PCIe总线规范所定义的总线频率和链路编码方式并不相同,如表41所示。
表41 PCIe总线规范与总线频率和编码的关系
如上表所示,不同的PCIe总线规范使用的总线频率并不相同,其使用的数据编码方式也不相同。PCIe总线V1.x和V2.0规范在物理层中使用8/10b编码,即在PCIe链路上的10 bit中含有8 bit的有效数据;而V3.0规范使用128/130b编码方式,即在PCIe链路上的130 bit中含有128 bit的有效数据。
由上表所示,V3.0规范使用的总线频率虽然只有4GHz,但是其有效带宽是V2.x的两倍。下文将以V2.x规范为例,说明不同宽度PCIe链路所能提供的峰值带宽,如表42所示。
表42 PCIe总线的峰值带宽
由上表所示,×32的PCIe链路可以提供160GT/s的链路带宽,远高于PCI/PCI-X总线所能提供的峰值带宽。而即将推出的PCIe V3.0规范使用4GHz的总线频率,将进一步提高PCIe链路的峰值带宽。
在PCIe总线中,使用GT(Gigatransfer)计算PCIe链路的峰值带宽。GT是在PCIe链路上传递的峰值带宽,其计算公式为总线频率×数据位宽×2。
在PCIe总线中,影响有效带宽的因素有很多,因而其有效带宽较难计算。尽管如此,PCIe总线提供的有效带宽还是远高于PCI总线。PCIe总线也有其弱点,其中最突出的问题是传送延时。
PCIe链路使用串行方式进行数据传送,然而在芯片内部,数据总线仍然是并行的,因此PCIe链路接口需要进行串并转换,这种串并转换将产生较大的延时。除此之外PCIe总线的数据报文需要经过事务层、数据链路层和物理层,这些数据报文在穿越这些层次时,也将带来延时。
在基于PCIe总线的设备中,×1的PCIe链路最为常见,而×12的PCIe链路极少出现,×4和×8的PCIe设备也不多见。Intel通常在ICH中集成了多个×1的PCIe链路用来连接低速外设,而在MCH中集成了一个×16的PCIe链路用于连接显卡控制器。而PowerPC处理器通常能够支持×8、×4、×2和×1的PCIe链路。
PCIe总线物理链路间的数据传送使用基于时钟的同步传送机制,但是在物理链路上并没有时钟线,PCIe总线的接收端含有时钟恢复模块CDR(Clock Data Recovery),CDR将从接收报文中提取接收时钟,从而进行同步数据传递。
值得注意的是,在一个PCIe设备中除了需要从报文中提取时钟外,还使用了REFCLK+和REFCLK-信号对作为本地参考时钟。
评论
查看更多