新型软开关功率因数电路分析
- 功率因数(38692)
- 软开关(29793)
相关推荐
两种高功率因数开关电源设计方案的比较
针对传统开关电源因输入电路采用不可控二极管或相控晶闸管整流而存在输入电流谐波含量大、功率因数低的问题,提出了两种高功率因数开关电源的设计方案,分析了采用APFC技术和
2012-04-12 10:36:056645
2、高功率因数开关电源设计毕业设计
2、高功率因数开关电源设计随着电力电子技术的蓬勃发展,开关电源技术也越来越成熟。熟练运用了高智能化技术、集成技术等高新技术,使开关电源实现了高工作效率、高频率、高可靠性的工作特点。开关电源已经成为
2016-05-06 15:57:14
功率三角和功率因数教程
/ VA =功率因数,pf正弦(Φ)= Q / S = VAr / VATan(Φ)= Q / P = VAr / W功率因数计算为有功功率与视在功率之比,因为该比率等于cos(Φ)。交流电路中的功率因数
2020-09-25 10:49:25
功率因数的校正
:千瓦时)。但事实上,对于所有不支持功率因数校正 (PFC) 的设备来说,从插座消耗的电能要高得多,得用千伏安时 (kVAh) 来表示。而这之间的成本差异则由公用事业公司慷慨承担了。智能电表即可
2018-09-19 11:30:24
gl功率因数的提高
gl功率因数的提高(2)将电容与负载并联 并联电容后的总电流要减小。并联电容后有功功率未变。作业:P217,10-18 *在直流电路中,功率仅与电流和电压的乘积有关; 上式中的cos ?是电路中
2021-09-10 06:44:59
什么是功率因数校正 PFC?
衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种
2022-10-08 11:30:07
你误解功率因数了吗?
性质,就像一个人只有一个身份证号码一样。这种性质的确定是从负载的输入端看进去,称为负载的输入功率因数。一个负载电路完成了,它的输入功率因数也就定了。 比如UPS作为前面市电或发电机的负载而言,比如六
2016-01-20 11:10:30
关于电源的功率因数校正
这些天准备和小伙伴攻一下功率因数校正,但是不知道哪些芯片能够比较好的进行功率因数测量,或者是用哪种方法可以测得功率因数。我们也查阅了一些资料,但是没找到满意的方法,哪位大神指点一下!!
2015-06-17 13:28:34
变频器的输入输出功率因数不太不同的原因?
变频器的输入功率因数比输出功率因数高的原因是什么?
在变频器输出达到额定电流输出的时候,变频器的功率因数也是比较低的,以37KW为例,37000/380/75/1.732=0.75,为什么变频器在
2024-02-22 11:24:15
如何区别主动式功率因数校正?
90%以上才是主动式的功率因数校正。3.看电源外观:准确率50%。在目前所知的技术下,具有主动式功率因数校正的电源供应器,不会有电压切换开关(多为红色),其输入电压必须是全域电压(Full range
2022-10-08 11:59:08
如何测量交流电路功率和功率因数?
如上图,虚拟仪表中只有电压、电流表,没有功率表。请教一下,如何测量一个电路各元件的功率和功率因数呢?有没有办法让计算值和电路能够显示在同一界面上?非常感谢。
2013-04-08 15:29:22
有源功率因数校正电路和无源功率因数校正电路介绍
的小功率场合。 (2) 有源功率因数校正电路 有源功率因数校正电路如上图所示,PFC部分主要由工作在高频开关状态的开关管和电路组成,一般为boost型拓扑,可实现宽输入电压范围。相比于无源功率因数
2023-04-03 14:37:48
有源功率因数校正电路工作原理分析
电容和负载供电。 图1 升压型PFC主电路这种电路的优点是:(1)输入电流完全连续,并且在整个输人电压的正弦周期内都可以调制,因此可获得很高的功率因数;(2)电感电流即为输入电流,容易调节;(3)开关
2011-09-22 09:45:00
有源功率因数校正电路工作原理分析
,因此峰值电流较大;开关管门极驱动信号地与输出地不同,驱动比较复杂;输出电压极性与输入电压极性相反,后级逆变电路较难设计,因此也采用得较少。 提示:常用连续电流模式类功率因数校正芯片有
2012-11-28 14:38:48
有源功率因数校正与单级功率因数校正的关系
请问有源功率因数校正与单级功率因数校正有关系吗?在我看来单级功率因数校正是否包括有源功率因数校正技术呢,对不对呢?有人能详细解答一下嘛?
2020-04-19 21:26:10
有源功率因数校正技术介绍
功率因数校正电路、无桥型功率因数校正电路、低频开关功率因数校正电路)和三相功率因数校正电路原理及控制〔重点介绍了电压型和电流型三相功率因数校正电路数学模型、锁相、PWM、控制技术)。此外,本书还介绍了软
2023-09-19 07:12:10
请教ADE7753功率因数问题
看了AN-639的应用手册,对功率因数的计算还是有些疑问 AN-639中这样描述我想问下这个比例是如何确定的,他是不变的吗?我可不可以认为功率因数这样来计算, 在积分器开启时:cosQ = AENERGY*0.87 / VAENERGY 又或者功率因数应该用其它的方法来计算?
2018-11-12 09:36:10
请问电机变频时功率因数如何测?
有个项目要测电机变频时的功率因数,我装了功率因数表,是数字显示的那种。电机工频工作时,测量正常。但变频时测量就不正常了。功率因数表的进线接于电机侧。换了几个牌子的功率因数表都不行,把功率因数表的进线
2023-12-14 06:41:54
日光灯电路和功率因数的提高
日光灯电路和功率因数的提高一、实验目的1、了解日光灯的工作原理,学会联接日光灯电路2、了解提高功率因数的意义和方法3、学会使用功率表二、实验原理1、
2008-11-03 17:03:2449
反激式功率因数校正电路的电磁兼容设计
通过反激式功率因数校正电路说明了单级功率因数校正电路中的电磁兼容问题,分析了单级功率因数校正电路中骚扰的产生机理,给出了电磁兼容的设计,最后提出了其他几种减少
2008-12-19 15:47:0723
反激式功率因数校正电路的电磁兼容设计
通过反激式功率因数校正电路说明了单级功率因数校正电路中的电磁兼容问题,分析了单级功率因数校正电路中骚扰的产生机理,给出了电磁兼容的设计,最后提出了其他几种减少
2009-06-29 16:11:5321
电荷泵高功率因数变换器
本文提出一种新型电荷泵高功率因数准半桥变换器拓扑结构。该变换器具有电路结构简单和采用普通的PWM 控制方式的特点。文中分析了电路的工作过程及取得高功率因数的条件,
2009-08-15 15:35:1019
基于UC3854的三相单位功率因数校正电路研究
分析了UC3854 控制原理和三相三电平三开关功率因数校正电路特点,并结合UC3854 的原理设计出功率因数校正电路双闭环控制器,给出了仿真设计和结果。关键词:三相三开关三
2009-09-01 09:41:1498
单相有源功率因数校正技术的发展
本文对现有的功率因数校正技术进行了分析和总结。通过软开关技术以及新型高性能的电路拓扑设计,分析了提高AC-DC变换器的转换效率的技术。提出了无桥PFC电路是高性能功率因
2009-10-14 10:40:5441
分功率因数电能表的设计
设计了一种分功率因数电能表。该电能表是采用实时功率因数调整电费方法的一种新型电子式电能表,目的是解决目前所使用的月平均功率因数法不能真实反映用户实时功率因数的缺
2010-02-23 15:31:4423
新型软开关三相高功率因数整流器的研制
新型软开关三相高功率因数整流器的研制【摘 要】 提出了一种三相降压式电容输入多谐振功率因数校正(PFC)电路,并且分析了多谐振PFC的工作原理,采用单相时变简化分析模
2010-03-01 16:25:2334
分功率因数电能表的设计
设计了一种分功率因数电能表。该电能表是采用实时功率因数调整电费方法的一种新型电子式电能表,目的是解决目前所使用的月平均功率因数法不能真实反映用户实时功率因数的缺
2010-07-14 17:26:5713
有源功率因数校正电路的设计
主要介绍了有源功率因数校正(APFC)的工作原理、电路分类。设计了基于UC3854芯片的一种有源电路功率因数校正电路方案,着重分析了电路参数的选择和设计。实践证明采用APFC后,
2010-08-04 11:26:300
开关电源功率因数校正技术及功率级设计
摘要:本文较详细地分析了普通开关电源功率因数过低的原因及产生的危害,简要分析了各类功率因数校正电路的工作原理及主要优缺点,还介绍了功率因数校正主回路的设计方法。
2010-12-14 12:46:5446
什么是功率因数?功率因数用什么表示?
功率因数----在直流电路里,电压乘电流就是有功功率。但在交流电路里,电压乘电流是视在功率,而能起到作功的一部分功率(即有功功率)将小于视在功率。有功功
2009-04-17 10:36:526968
反激式功率因数校正电路的电磁兼容设计
反激式功率因数校正电路的电磁兼容设计
通过反激式功率因数校正电路说明了单级功率因数校正电路中的电磁兼容问题,分析了单级功率因数校正电路中骚扰的产生机
2009-06-30 20:23:29934
基于Flyboost模块的新型单级功率因数校正变换器
基于Flyboost模块的新型单级功率因数校正变换器
摘要:提出了一种新型的功率因数校正模块(flyboost模块),它具有
2009-07-14 09:16:361030
一种新型单级功率因数校正(PFC)变换器
一种新型单级功率因数校正(PFC)变换器
摘要:提出了一种新型的功率因数校正单元(flyback+boost单元)。这种功率因数单
2009-07-14 17:49:32932
硬开关与软开关功率因数校正电路的研究
硬开关与软开关功率因数校正电路的研究
摘要:介绍两种常用的APFC芯片UC3854和UC3855的工作原理、功能特点,做了实验波形分析及对比性研究。
关键词:畸
2009-07-21 16:40:391461
一种小功率单级功率因数校正电路
一种小功率单级功率因数校正电路
摘要:讨论一种单级功率因数校正电路的原理,并分析其实验结果。
关键词:单级功率因数
A Low Powe
2009-07-21 16:53:382032
电子镇流器中功率因数校正电路的分析及应用 (IR2166/I
电子镇流器中功率因数校正电路的分析及应用
IR2166/IR2167是集功率因数校正器(PFC)、镇流器和半桥驱动器为一体的新型电子镇流器驱动电路。内部的
2009-10-09 09:36:011827
无源无损软开关功率因数校正电路的研制
无源无损软开关功率因数校正电路的研制
在开关电源中引入功率因数校正PFC(Power FactorCorrection)技术,一方面使电源输入电流与输入电压波形同相,即使功率因数趋于1
2009-11-05 10:17:251271
2 kW有源功率因数校正电路设计
2 kW有源功率因数校正电路设计
摘要:有源功率因数校正可减少用电设备对电网的谐波污染,提高电器设备输入端的功率因数。详细分析有源功率因数校正APFC(active power
2010-03-13 10:36:231530
基于BCM的有源功率因数校正电路的实现
基于BCM的有源功率因数校正电路的实现
摘要:分析整流电路的拓扑结构和工作模式,探讨该整流电路关键参数的选取依据,提出临界导电模式(BCM)功率因数校正Boost开关
2010-03-13 10:50:222388
新型单级隔离型软开关功率因数变换器
提出一种兼具软开关和箝位的新型单级隔离型 功率因数校正 变换器拓扑。该变换器能满足电气隔离的应用要求,提升单级隔离型PFC的功率等级。与传统单级结构相比,新拓扑输入电流
2011-07-26 17:58:4333
无源功率因数校正电路的原理和应用
本文介绍SIEMENS公司提出的开关电源集成控制器TDA16846无源功率因数校正(PFC)电路原理及其在电视机开关电源中的应用。
2012-10-16 07:50:5488
功率因数分析大全(功率因数的计算公式,功率因数对照表,功率因数和无功率比值分析)
功率因数(Power Factor)的大小与电路的负荷性质有关, 如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术
2017-07-06 16:55:3975753
功率因数计算公式_功率因数与什么有关_提高功率因数的方法
功率因数(Power Factor)的大小与电路的负荷性质有关, 如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。
2017-08-07 15:57:1315967
功率因数表
功率因数指有功功率和视在功率的比值,一般用符号λ表示,即:λ=P/S.在正弦交流电路中,功率因数等于电压与电流之间的相位差(ψ)的余弦值,用符号COSψ表示。此时,COSψ=λ。
2017-08-27 11:27:5913563
功率因数选大还是选小好?功率因数过大或过小的危害
功率因数,英文名称为Power Factor,简称PF,常用符号为λ。功率因数是电力系统的一个重要技术参数,功率因数为有功功率和视在功率的比值,由于在正弦电路中,功率因数等于位移因数cosφ,功率因数与位移因数两个概念容易被混淆,甚至,大多数人认为,cosφ就是功率因数。
2017-10-31 17:10:4821009
开关电源功率因数校正电路设计
随着开关电源的广泛应用,开关电源功率因数校正技术已成为提高开关电源效率、减少电网污染的核心技术,显示出了强大的生命力。《开关电源功率因数校正电路设计与应用实例》结合国内外开关电源功率因数校正技术
2017-11-16 16:16:0723
功率因数表原理_功率因数表怎么接线
功率因数指有功功率和视在功率的比值,一般用符号λ表示,即:λ=P/S.在正弦交流电路中,功率因数等于电压与电流之间的相位差(ψ)的余弦值,用符号COSψ表示。此时,COSψ=λ。
2017-12-04 14:11:2536114
关于功率因数的详细解析
功率因数(Power Factor)是衡量电气设备效率高低的一个系数。它的大小与电路的负荷性质有关, 如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感性负载的电路功率因数都小于1。
2019-04-29 10:53:1013072
什么是功率因数?功率因数的详细解析
功率因数(Power Factor是衡量电气设备效率高低的一个系数。它的大小与电路的负荷性质有关, 如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感性负载的电路功率因数都小于1。功率因数低,说明无功功率大, 从而降低了设备的利用率,增加了线路供电损失。
2019-06-16 11:47:36163540
进行三相桥式整流电路功率因数的PSPICE仿真分析资料说明
分析了LC无源功率因数校正电路和纯阻性负载的三相桥式整流电路所能达到的极限功率因数,并在此基础上,优化了一种无源校正电路的结构和参数,最终将功率因数校正到0.991.
2019-07-25 17:25:530
开关电源功率因数校正电路设计与应用实例 [周志敏,纪爱华 编] 2012年版
开关电源功率因数校正电路设计与应用实例 [周志敏,纪爱华 编] 2012年版(开关电源技术发展方向)-随着开关电源的广泛应用,开关电源功率因数校正技术已成为提高开关电源效率、减少电网污染的核心技术
2021-09-24 15:39:120
高功率因数开关电源设计
高功率因数开关电源设计(开关电源技术要求)-功率因数设计是关键指标的电源、电源一贯重视开发技术问题。本文重点对当前流行的单片开关电源芯片为普遍的低功率开关电源的设计和制造。在这里,电源控制电路,利用
2021-09-27 13:41:3316
matlab高频电源是哪个,基于Matlab的高频开关电源功率因数测量电路研究
0引言高频开关电源的功率因数是非常重要的一个参数,直接决定着产品是否符合通用的谐波标准,衡量着产品的优劣。为了减小谐波、提高功率因数,高频开关电源普遍采用了功率因数校正电路来改善电流波形
2021-11-07 20:50:5915
功率因数的原理和Multisim仿真
电路中有功功率与视在功率之比称为功率因数;正弦稳态电路中平均功率(即有功功率)的计算式为:P=UIcosФ;视在功率计算式为S=UI;两者比值cosФ即为功率因数,Ф又称为功率因数角。
2023-04-17 14:28:152784
什么是功率因数?一文讲透
功率因数(Power Factor是衡量电气设备效率高低的一个系数。它的大小与电路的负荷性质有关, 如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感性负载的电路功率因数都小于1。功率因数低,说明无功功率大, 从而降低了设备的利用率,增加了线路供电损失。
2023-05-14 10:49:568340
什么是功率因数,提高功率因数的三种方法
功率因数是能源效率的表示。它通常以百分比表示,百分比越低,电源使用效率越低。PF表示电路中使用的实际功率与输送到电路的视在功率之比。96%的功率因数比 75% 的功率因数表现出更高的效率。在许多地区,PF低于95%被认为是低效的。
2023-06-29 15:25:252349
什么是功率因数 功率因数校正基础知识
简介 功率因数校正 (PFC) 是客户在选择电源时寻求的功能之一,因为它对设备的整体效率起着巨大的作用。本文档介绍了功率因数校正 (PFC)的基本事实和原理以及管理该功能的法规。它还讨论了常见的原因
2023-10-05 15:56:001060
电路的功率因数怎么计算 功率因数偏低如何解决
电路的功率因数怎么计算 电路的功率因数是指电路中有功功率与视在功率之比的标量值。功率因数是衡量电路中功率利用效率的重要参数,它可以反映出电路中的有功功率与无功功率之间的平衡情况。 要计算电路
2024-02-14 17:35:003114
什么是功率因数、提高功率因数的意义是?
功率因数是指交流电路中有功功率与视在功率的比值,用来衡量电路中有功功率的效率。功率因数是一个非常重要的参数,它直接关系到电能利用的效率和电力系统的稳定运行。提高功率因数的意义首先是提高电路
2024-02-01 14:17:52289
电容补尝功率因数是怎么回事?
。 一、功率因数的概念 功率因数是指交流电路中有功电流和视在电流的相位差的余弦值,它是衡量电路效率的重要指标。功率因数的范围为-1到1之间,当功率因数为1时,电路中的有功功率和视在功率相等,电路效率最高;当功率因数为0时,电路
2024-02-04 09:05:28230
功率因数偏低如何解决 功率因数和有功功率无功功率的关系
功率因数是交流电路中电流和电压之间相位差的一种测量方式,它反映了电路中有用功率与总功率之间的比例关系。功率因数偏低可能会导致能源浪费、电网负荷增加和电气设备寿命缩短等问题。本文将探讨功率因数偏低
2024-02-04 14:26:53843
评论
查看更多