电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电子发烧友网>今日头条>涂抹导热硅脂之前你不知道的小秘密

涂抹导热硅脂之前你不知道的小秘密

收藏

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论

查看更多

相关推荐

20W-50W厚膜无感电阻TO-220封装技术规格&散热说明

技术 导热导热颗粒与流体结合形成类似润滑的稠度的组合。这种液体通常是硅油,但现在有非常好的“非导热导热已经使用多年,通常是所有可用导热材料中热阻最低的。 导热垫片是导热
2024-03-18 08:21:47

100W-150W电阻器-TO-247模压厚膜电阻(1)

。 因此,使用热界面材料来填充这些空气空隙非常重要。 有几种材料可用于降低电阻器和散热器表面之间的热阻。 图2 - 弹簧夹安装技术 导热导热颗粒与流体结合形成类似润滑的稠度的组合。这种液体
2024-03-15 07:11:45

手持机应用领域窄?多的是你不知道的事!

手持终端出现,让我们不得不提到物联网。今年的物联网可以说是各行各业发展的新思路。面对新的机遇,物联网技术提供了更多优化的细节和可能性。射频识别手机的出现为所有应用的实现提供了完美的硬件保障前提。应用射频识别技术和扫描电子标签、快速收集数据、传输到后台存储。经过近年来的努力,已经应用于物流、零售、仓储、医疗、公共事业等行业。
2024-03-12 13:57:3454

昨天看到消息Altera从Intel独立出来了,不知道大家常用的FPGA是什么?

昨天看到消息Altera从Intel独立出来了,不知道大家常用的FPGA是什么?我这边分成常规生产治具是altera的,算法和图像相关的使用的是Xilinx的;
2024-03-06 13:39:48

一不小心就炸机!你不得不知道的,示波器测试的共地问题

大家都知道示波器的检测探头测到哪里,哪里就和示波器共地。两个不共地的检测点,一旦被同一个示波器检测时,它们就会自动共地。多通道测试时,一定要注意这个问题。 1.测试两组共地信号 如下示意图: 输入
2024-02-27 10:06:42108

导热系数测试仪使用方法 导热系数测试仪原理是什么

的使用方法: 准备工作: 在开始使用导热系数测试仪之前,我们需要做一些准备工作。首先,清洁测试仪的传热面,确保其表面没有杂质或脏物。其次,将待测试材料准备好,根据仪器要求制备成适当的尺寸和形状。最后,接通电源并校
2024-01-25 10:42:21299

基于高光谱成像技术的涂抹掩盖字迹识别方法研究

在刑事案件和民事案件中,许多重要文件中的签名、日期、数字等字迹常常被有意涂抹而掩盖其真实信息,因而无法作为证据使用。因此,开展高光谱成像技术快速无损显现涂抹掩盖字迹十分必要。 目前涂抹掩盖字迹的显现
2024-01-24 16:18:59132

在pmu_init () 之前添加了systick_init (),systick_value_Get () 总是返回0的原因?

调用 systick_Init ()。 我在 pmu_init () 之前添加了 systick_init (),但是 systick_value_Get () 仍然返回 0。 我不知道如何让它正常运行
2024-01-22 06:00:24

GTX 295双芯显卡 两块PCB合体的疯狂之作!

不知道还有多少朋友记得“单卡双芯”或者说“双芯单卡”?其中的代表作,GTX 295,已经诞生整整15年了。
2024-01-16 10:21:56205

直插大功率电感不知道怎么选就看这里

直插大功率电感不知道怎么选就看这里 编辑:谷景电子 关于直插大功率电感的选型一直是一个难题,要想直插大功率电感的优势在电路中发挥着作用,那么选型这个环节是必不可少并且特别重要。如果你对直插大功率电感
2024-01-04 22:46:39110

我都不知道的PWM的很偏的问题

PWM输出时的DeadZone(死区)作用是在电平翻转时插入一个时间间隔,避免关闭前一个设备和打开后一个设备时因为开关速度的问题出现同时开启状态而增加负荷的情况(在没有彻底关闭前打开了后一个设备),尤其是电流过大时容易造成短路等损坏设备,如:互补PWM波输出在逆变器(直流转交流)中的应用。PWM(PulseWidthModulation),即脉宽调制,简单来
2023-12-22 08:00:58204

导热系数测定仪在研究院应用案例 #导热系数 #导热系数测定仪 #生产厂家

测定仪导热系数
南京大展检测仪器发布于 2023-12-21 14:00:15

7种MOSFET栅极电路的常见作用,不看不知道

7种MOSFET栅极电路的常见作用,不看不知道
2023-12-15 09:46:07253

快速制作PCB中的秘密

快速制作PCB中的秘密
2023-12-14 18:27:50336

揭秘pcb是什么物质:你不知道的“化学战士”

揭秘pcb是什么物质:你不知道的“化学战士”
2023-12-14 10:27:30301

电阻的秘密——你必须知道的电阻参数

电阻的秘密——你必须知道的电阻参数
2023-12-06 14:31:22323

VLAN内无法互访,不知道怎么处理?

分别检查报文入、出端口状态是否Up。如果端口没有Up,请检查链路连接是否存在异常。
2023-12-06 09:25:59288

【PADAUK】 应广PGS134 应广EEPROM单片机MCU芯片

在当今的电子世界中,单片机MCU芯片和EEPROM存储器发挥着越来越重要的作用。然而,在选择这些组件时,许多工程师可能会感到困惑,不知道应该选择哪种类型的芯片。今天,我们将重点介绍应广
2023-11-23 21:13:01

导热硅脂在电源适配器中的应用有哪些?

导热硅脂在电源适配器中的应用有哪些? 导热硅脂在电源适配器中的应用 1. 引言 电源适配器是将交流电转化为直流电并提供给设备使用的装置。在电源适配器的设计中,导热硅脂是一种常见的导热材料,它具有
2023-11-23 15:34:22332

关于手机射频芯片,你不知道的事!

Chrent手机射频前端模块简介射频前端模块(RFFEM:RadioFrequencyFrontEndModule)是手机通信系统的核心组件,对它的理解要从两方面考虑:一是必要性是连接通信收发芯片(transceiver)和天线的必经通路;二是重要性它的性能直接决定了移动终端可以支持的通信模式,以及接收信号强度、通话稳定性、发射功率等重要性能指标,直接影响终
2023-11-16 08:27:541313

不知道的FPC,它的发展史竟然是这样的!

不知道的FPC,它的发展史竟然是这样的!
2023-11-15 10:48:35395

知道什么是辅助继电器吗?辅助继电器的作用和分类

知道什么是辅助继电器吗?它其实就像是PLC控制系统中的小秘密
2023-11-14 15:28:08865

画PCB可能遇到的问题和解决办法

不知道你有没有在画PCB呢,在画的时候,遇到了些什么问题呢?
2023-11-13 14:18:251233

关于伺服电机你可能不知道的20个问题

2023-11-06 08:31:300

华为小鹏互怼?谁没搞懂智能驾驶?何小鹏喊话“不知道他急什么”?

目前行业厂商在智能驾驶方案方面的竞争正加速升级;各路智能驾驶解决发方案都在加速上车。理想汽车、比亚迪等都在大力推进。根据工信部的数据显示预计2025年乘用车L2级及以上智能驾驶渗透率将会达到70%。 现在智能驾驶再次被关注;这次是因为华为余承东与小鹏汽车的何小鹏疑似在隔空“互怼”;事件起因最先应该是小鹏汽车董事长何小鹏在接受采访时,被问及友商大定用户大多数愿意为AEB主动安全系统买单时,称“第一,大部分人可能从来没有
2023-11-05 17:11:04601

不能不知道的双向I/O联动控制技巧!

近年来智能制造加速发展,深入汽车、新能源、消费电子、工业制造等等行业,引领产业转型升级。通过数据分析和人工智能技术,智能制造可以自动做出决策,优化生产流程,高度自动化地完成生产任务,减少人工干预,显著提高生产精度、生产质量、生产效率。 智能化的控制离不开灵活高效的自动化装备,ITECH产品作为广泛应用于工业产线的测试测量仪器,具有高速高精度、内置自动化测试功能、多种通讯接口可选等特点,帮助用户完成自动化工作
2023-11-03 17:07:14359

单片机怎么控制一个双向可控

可以直接用光耦三极管来控制可控的g极吗?之前没用过,可以把可控理解为一个大功率高速开关吗
2023-11-02 06:51:06

不知道该如何选择氮化镓芯片?

GaN氮化镓比硅更适用于高频功率器件。可以显著降低功率损耗和散热负载,在体积和功率密度方面具有明显的优势。用于逆变器、稳压器、变压器、无线充电等领域,可有效降低能量损耗。
2023-10-27 14:12:35225

原来DCM和CCM区别这么大!你选对了吗?

应的是 CCM 模式,很多工程师朋友并不知道两者的区别,更不知道该如何选择。今天的电源小课堂就带大家搞清楚这个问题。 观看 视频 视 频文字部分 DCM和CCM的概念 以基础的Buck为例,上管 Q1 导通时,输入给电感储能同时给输出提供能量 。 下管 Q2 导通时,电感续流给输出提供
2023-10-08 17:40:028332

求助!我想使用频谱分析仪器分析超声波频谱不知道可不可行?

求助!我想使用频谱分析仪器分析超声波频谱不知道可不可行?跪求大神给一套方案。 频谱分析仪(频谱范围是0hz-100mhz) 超声波探头中心频率1mhz 我想分析超声波20khz-3mhz的频谱不知道可不可行? 超声波探头可以更换
2023-10-04 08:26:09

不知道这个属性?那保险丝就只是一个摆设!

Q A 问: 保险丝安装类型有哪些? 你知道多少? 保险丝   “安装类型”属性描述了 保险丝 在应用中机械固定以及电连接的机制。这是一个非特定参数,表明一般的风格或形式,而不是一种特定的设计;具有
2023-09-20 20:10:08199

你所不知道的稳压二极管

特殊二极管里有稳压二极管、发光二极管、光电二极管和变容二极管等等。
2023-09-12 17:42:01460

整流桥的小秘密快来了解一下!

电源元器件电压电子技术
学习电子知识发布于 2023-09-05 21:57:22

这么简单的电压指示电路不知道

电源元器件电压电子技术
学习电子知识发布于 2023-09-05 21:55:40

什么?不知道散热电路!

电源电流电压电子技术
学习电子知识发布于 2023-09-05 21:41:16

破碎机轴磨损怎么在线快修

知道修复破碎机轴磨损要经过哪些操作吗?不要着急,不知道的话,小编为您解答。 ①用氧气乙炔表面除油,直至油迹碳化无火花飞溅; ②打磨修复面,确保表面粗糙以增大粘结力; ③无水乙醇清洗打磨
2023-09-05 17:40:360

液体导热系数怎么测量? #导热仪 #导热系数 #导热系数测定仪

测试仪导热
南京大展检测仪器发布于 2023-08-29 16:39:28

fpga进行图像处理的优势是什么

可能制约FPGA在这些方面应用的关键还是人才的缺乏。大家不知道FPGA擅长什么,想用却又不知道怎么用。网上很多传说都说这个FPGA编程很底层,很不好用。
2023-08-25 09:21:53686

提高电源适配器效率,满足六级能效的几个小秘诀 (附案例)

提高电源适配器效率,满足六级能效的几个小秘诀 (附案例)
2023-08-08 11:32:541131

不知道伺服电机的三种控制方式吗,这样去分析就懂了

plc电机工业控制伺服控制
学习电子知识发布于 2023-08-07 23:35:02

采集卡种类太多!不知道怎么选?

服务不及时,无法提供个性化服务。以及最重要的一点是价格贵! 我之前学电的朋友一般会选择阿尔泰数据卡,性能上也不错,最主要可以提供个性化服务。加上价格也不贵。 阿尔泰是涵盖总线接口产品比较多的企业,不仅产品种类齐
2023-07-28 09:56:57516

#硬声创作季 电子知识 猜不知道

元器件电子知识
Mr_haohao发布于 2023-07-25 20:41:07

#硬声创作季 电子知识 不知道

电子知识
Mr_haohao发布于 2023-07-25 11:30:15

#硬声创作季 电子知识 不知道的技巧

电子知识
Mr_haohao发布于 2023-07-25 09:27:16

NUC的前景,你不知道罢了

7月12日据外媒 ServetheHome 报道,英特尔已经开始通知其生态系统的合作伙伴们,将停止对 NUC(Next Unit of Computing)业务的直接投资。这一决策引起了业界和消费者的广泛关注,人们不禁开始思考,英特尔的撤退是否意味着迷你主机时代即将终结? 虽然英特尔是迷你主机的开创者之一,但生产电脑并不是其主营业务。因此,在市场竞争比较激烈的时候,英特尔选择停止对NUC的直接投资也是可以理解的。 从主机市场的销量来看,英特尔的NUC在市场上表现不佳
2023-07-20 14:18:30356

大家不知道吗?我们助力储能行业很久啦!

经常看高速先生文章的粉丝会知道,我们文章主打内容排名不分先后有高速信号、高速测试、经典案例、DDR系统、PI设计等。直到突然有一天,有不少粉丝问:“你们有做过储能行业产品的设计吗”???
2023-07-17 15:55:45306

很多插件共模电感厂家都不知道的电感选型小知识

很多插件共模电感厂家都不知道的电感选型小知识 编辑:谷景电子 共模电感是电路中常用的电子元器件,大部分用于过滤共模干扰信号。在选型的时候,有些误区可能会引起所选不合适的共模电感,从而影响电路的功能
2023-07-13 18:28:49371

太真实了!那些你不知道的IC验证日常

根据调查结果如下图所示,分别列出了近几年DE和DV的整体数量比,以及在不同规模领域内的人数比。
2023-07-13 09:08:00831

ARP协议的工作流程

通过ARP协议知道对方的mac地址,已经知道对方ip地址的情况下,不知道mac地址。定义了一个ARP协议来解决这个问题。
2023-07-10 17:29:061362

Wi-Fi6那些你不知道的功能分享

从简单的家用血压监测仪到公司的设备网络和整个公用事业电网,Wi-Fi® 在当今许多领域中的应用越来越广泛,甚至是备受期待。通过使用 Wi-Fi,房主可以安全可靠地控制智能烤箱、电动汽车充电站或洒水系统,从而节约时间和能源。楼宇管理员能够实现远程照明和空调系统,以此来节约资源、提高舒适度和减少开支。电网运营商可以通过无线方式检测并解决与维护、电能分配和安全相关的问题。
2023-07-04 10:53:16493

导热系数测试仪:解密材料的导热密码

导热系数测试仪是一种用于测量材料导热性能的仪器,通过测试材料的导热系数,可以评估其在能源、建筑、电子、航空航天等领域中的性能表现。本文将详细介绍导热系数测试仪的基本原理、种类、使用方法和注意事项
2023-06-30 14:00:55401

丝网印刷导热的要求有哪些?

电路维修
YS YYDS发布于 2023-06-29 19:28:22

导热吸波材料研究进展

摘要: 针对电子和通讯设备小型化、高度集成化带来的散热和电磁兼容困难问题,本文研究分析了导热吸波材料的发展现状,从单一的导热功能材料和吸波功能材料的设计制备出发,归纳了导热机理与吸波机理以及影响导热
2023-06-26 11:03:02474

导热系数怎么测量?#导热系数 #导热系数测定仪 #导热

导热系数
南京大展检测仪器发布于 2023-06-25 16:11:55

技术资讯 I 一文了解 PCB 的有效导热系数

本文要点PCB有效导热系数的定义。影响PCB有效导热系数的关键因素。了解热模型中有效导热系数的准确度。01什么是PCB有效导热系数?“有效导热系数”代表材料的传导热能力。当我们谈及PCB的有效导热
2023-06-21 17:30:011095

导热油管腐蚀治理的修复步骤

  现场进行导热油管腐蚀治理的步骤如下:   1.查看设备情况,擦拭油污固垢,打磨去除腐蚀杂质;   2.用无水乙醇清理待修复表面;   3.调和索雷碳纳米聚合物材料,均匀的涂抹
2023-06-21 16:51:090

为什么要用傅里叶变换?FFT不知道的细节

1.FFT变换的基本原理 傅立叶变换是数字信号处理领域一种很重要的算法,可以将一个信号从时域变换到频域。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。 根据原信号的不同类型,傅里叶变换可以分为四种类别: (1)非周期性连续信号傅里叶变换 (2)周期性连续信号傅里叶级数 (3)非周期性离散信号离散时域傅里叶变换 (4)周期性离散信号离散傅里叶变换 快速傅里叶变换(FFT),是利用计算机计算离散傅里叶变换(DFT)的高效、快速计算方法的统称,但是它是基于复数的,复数DFT写成如下极坐标形式: 在复数傅里叶变换中,x[n]和X[k]都是复数数组,它包括正频率和负频率。K从0到N-1,0N/2的频率为正值,N/2N-1为负值。因为离散信号的频谱是周期性的,其周期等于抽样频率。所以N/2到N-1的频率和-N/2~0的频率是相同的。0点和N/2点的频率值为正负频率的分界。 我们设变换长度N = 2^L^,将x(n)按照n的奇偶分为两组 x 1 (r) = x(2r) x 2 (r)= x(2r+1) 其中r=0,1,…,N/2-1,带入上述复数DFT变换的公式,得到X[k]: 在式子中X 1 (K)和X 2 (K)分别是x 1 (n)和x 2 (n)的N/2点DFT,因此它只能算出前一半的值,后一半利用 可以得到后半部分X(k) 把x(n)的N点DFT合到一起,就是如下的蝶形运算,也是FFT的基本运算单元。 我们以8点的信号为例,三次按照奇偶分解,它的FFT信号流图如下: 2.抽样定理 抽样定理表明:如果一个连续信号f(t),其最高截止频率为f ~m~ ,如果用时间间隔为T≤1/(2*f ~m~ )的开关信号对f(t)进行时域抽样,则f(t)可以被样值信号唯一表示。即保证抽样频率fs≥2*f ~m~ ,可以由抽样信号f ~s~ (t),恢复出原始信号f(t)。 通常把最低允许的抽样频率f s =2fm称为“奈奎斯特频率”,把最大允许的抽样间隔T s =1/(2f m )称为“奈奎斯特间隔”。 3.FFT频谱分析 因为FFT是基于复数的,在计算FFT的时候会出现两种情况,输入的数据为实数和复数,实际当中输入信号x(n)一般都为实信号,即虚部为零。 (1)输入数据是实数 我们用matlab产生一个实正弦信号,如下: 正弦信号sin_data包含两个频点信号,f1=50Hz,f2=200Hz,采样频率fs=1024Hz,采样点数NFFT=1024,FFT之后结果为一个N点复数。每一个点对应着一个频率点,这个点的模值,就是该频率值下的幅度特性。所达到的频率分辨率为f ~d~ =fs/N=1024/1024=1Hz,某一点n所表示的频率为Fn=(n-1)*fs/N=n-1,每个点的模值是A的N/2倍,其中A为原始信号的峰值。FFT结果如下: 在频谱图中,前N/2个点有两个峰值,后N/2有两个峰值,是对称的。在上述中提到,FFT包含周期为2pi的特性,在做FFT的时候得到的是[0,2pi],包含一个完整的区间。正频率分布在[0,N/2]与[0,2pi]对应,N/2+1是正负频率的分界点,表示的频率为奈奎斯特采样频率的半,负频率分布在[N/2+1,N-1]与[pi,2pi]相对应,[pi,2*pi]就等同于[-pi,0],负频率没有物理意义,把上述频谱图做调整之后如下: 在做实数FFT时,往往将0~N/2点的值作为实际的频谱,由于正负频率幅值分量各占一半,幅值需要扩大2倍。 (2)输入数据是复数 我们用matlab产生一个和上述信号一样频率的复数信号,并观察其FFT之后的频谱,如下所示: 在做复数FFT的时候,只会有两个峰值,对应两个频率,且每个点的模值是A的N倍,A为原始信号的峰值。其实当我们输入指数形式的信号时,它包含实部和虚部两个信号,即x(n)=cos(n)+jsin(n)。相当于是两个频谱的叠加,cos(n)产生一个频谱,jsin(n)产生一个频谱,二者相互叠加,并不是没有了负频率,而是负频率相互抵消,正频率的幅值扩大了二倍。 (3)在实际中,通过FFT计算得到频点信息往往和信号的频点信息不相同,会有误差,这就取决于频谱的分辨率,例如:当fs=1000Hz的时候f d =fs/N=1000/1024=0.97Hz,因为f1=50Hz,f2=200Hz不是f~d~的整数倍,所以FFT的频谱中不包含这两个频点,只有其周围相接近的整数倍频点,通过FFT得到的频谱如下: 4.频率分辨率 频率分辨率也叫做两个相邻谱峰分开的能力,指分辨两个不同频率信号的最小间隔。我们用matlab产生一个余弦波信号(频率分别为1MHz和1.05MHz),幅值都为1,采样频率fs=100MHz,采样点数N=1000,对这1000个数据点做FFT得到频谱如下: 可以发现频谱点稀疏,在1MHz附近无法将1MHz和1.05 MHz的两个频率分开,频率成分无法被区分,一般由于频率分辨率不够造成的。 频率分辨率大致有两种类型,一种叫波形分辨率,由原始数据的时间长度决定: 另一种叫视觉分辨率或FFT分辨率,由采样频率和参与FFT的数据点数决定: 区分不同频率成分,是为了在数据点数不是以2为基数的整数次方是对原始数据进行“补零”操作。如果直接对原始数据做FFT,这两种频率分辨率是相等的。 (1)补零 现在对原始数据进行“补零”操作,在采样点1000个原始数据后面补充零达到7000个数据点,再对其做FFT,结果如下图所示: 可以发现频谱点密集了很多,但是在1MHz附近仍无法将两个频率成分分开,所以,虽然我们补了很多的零,但是波形分辨率仍然为1/T1 = 100kHz,大于1MHz和1.05MHz这两个频率成分之间的距离50kHz。时域补零相当于频域插值,也就是说,补零操作增加了频域的插值点数,使得频域曲线看起来更加光滑,增加了FFT频率分辨率。 (2)增加数据时间长度 在采样频率不变的情况下,想要分辨这两个频率,必须要改变波形的分辨率,也就是延长原始数据的时间长度,现在我们以同样的采样频率对信号采7000个点作为原始信号,然后对齐做FFT,得到的结果如下: 此时的波形分辨率为1/T 2 =14kHz,小于50KHz,可以看到有两个明显的峰值,但是会发现1MHz对应的幅值为1,与原信号中该频率成分的幅值一致,但1.05MHz对应的幅值明显低于1,这就是所谓的频谱泄露。使得在1MHz处有谱线存在,在1.05MHz处没有谱线存在,使测量结果偏离实际值,同时在实际频率点的能量分散到其它频率点上。 (3)为了解决这个问题,我们可以设法使得谱线同时经过1MHz和1.05MHz这两个频点,找到他们的最大公约数50kHz,用FFT分辨率计算得到FFT数据点数2000,但是我们的数据点已经有7000了,我们对点数扩大四倍到8000点,也就是补1000个零。这时FFT分辨率为12.5kHz,所以谱线同时经过1MHz和1.05MHz这两个频率点,对其做FFT结果如下: 从上图中可以看到,两个频点的幅值均与原信号一致,这也是补零操作带来的影响。
2023-06-20 16:07:46

有熟悉用NUC505的芯片吗?里面烧写码软加密了,想请问不知道是不能处理掉?

有熟悉用NUC505的芯片吗?里面烧写码软加密了,想请问不知道是不能处理掉!
2023-06-20 08:00:52

一文了解PCB的有效导热系数

什么是 PCB 有效导热系数?“有效导热系数”代表材料的传导热能力。当我们谈及 PCB 的有效导热系数时,我们谈论的是 PCB 将器件产生的热量转移到周围区域的能力。有效导热系数用 Keff 表示,单位是 W/m-K。
2023-06-18 09:52:413316

关于AnyDesk你不知道的5件事

游戏玩家会回忆起那些需要将软盘或CD安装到硬盘驱动器上的电脑游戏。不用说,数字时代已经推进了我们今天安装视频游戏的方式,因为从合法游戏平台下载已经取代了旧的CD-ROM。现在,您知道外出时可以使用AnyDesk远程开始下载PC游戏吗?
2023-06-11 15:53:45733

Espress通过uart模块连接计算机并将CH_PD上拉到VCC,不知道为什么总是完好无损的回来?

我从现场购买了 Espress 生产的 我通过 uart 模块连接计算机并将 CH_PD 上拉到 VCC。接下来,我通过串口助手向它发送指令。但是,不知道为什么总是完好无损的回来。有什么不对吗? 请帮忙!
2023-06-09 08:33:56

高翔博士分享:单目SLAM在移动端应用的实现难点有哪些?

很显然,没有距离信息,我们不知道一个东西的远近——所以也不知道它的大小。它可能是一个近处但很小的东西,也可能是一个远处但很大的东西。只有一张图像时,你没法知道物体的实际大小——我们称之为尺度(Scale)。
2023-06-07 15:02:57612

什么是DFM可制造性分析?

可能有人都不知道这个岗位,那我换个通俗易懂的解释。
2023-05-31 10:25:03971

有没有人让ESPduino与RC522 RFID读写器一起工作?

有没有人让 ESPduino 与 RC522 RFID 读写器一起工作?我不知道是我的引脚连接不正确还是我的代码有问题,真的需要一些帮助。如果之前已经让它工作了,如果可以发布的引脚连接和一些可能非常有用的基本代码。 谢谢
2023-05-31 06:14:38

盘点你不知道的电缆套管知识-科兰

电缆套管又称保护管、导管,是在电气安装中用于保护电线、电缆布线的管道,允许电线、电缆的穿入与更换。电缆套管是电力工程中推广使用的一种新型套管材料。盘点你不知道的电缆套管知识,希望能够得到帮助。 电缆
2023-05-25 10:24:23998

不知道的车灯-发光原理

眼睛作为人的心灵之窗,足可见其无比的重要性。而对汽车而言,车灯则是他们的眼睛。亮起的前大灯能使我们驾乘人员更清楚地看到黑暗为夜色下的道路信息,排除因盲区而造成意外交通事故。随着汽车技术的不断发展,车灯无论是外形,光源还是发光形式等都发生了巨大改变。人们对灯具已不局限于单纯的照明,信号作用上,而需要照明效果够远够广,外观造型够炫够电子系统够智能。目前常见的远
2023-05-23 11:24:23969

嵌入式开发中需要注意的几个C用法介绍

使用STM32开发的朋友不知道是否有发现过这样的一些宏定义?
2023-05-20 16:20:11687

品鉴一下祖传SQL脚本调优方法

本次脚本太过雍长,不知道之前那位高人几乎将所有业务逻辑都写到SQL里面了;
2023-05-19 10:50:55560

大电流插件功率电感电性能升级的核心秘密

关于对大电流插件功率电感电性能升级的问题,本篇我们就来给大家科普一些关于插件功率电感电性能升级的“小秘密”。
2023-05-18 18:17:052

TCP和UDP没人不知道吧?

TCP/IP协议,你一定经常听说吧,其中TCP(Transmission Control Protocol)称为传输控制协议,IP(Internet Protocol)称为因特网互联协议,好吧,这都是什么2B名字,根本不知所云,这个时候,计算机科学对于一个没有经过深入研究的人,毫无用户体验可言。
2023-05-18 17:18:34373

PCB过孔对散热有哪些影响​?

  在自然对流散热产品中,PCB上的过孔大小对散热的影响是很大的,但是具体有多大,还不知道,我们就从简单的产品分析开始,以单个芯片的过孔参数为对象,研究过孔参数变化对导热系数的影响。
2023-05-18 11:10:19851

今日说“法”:paramter 、localparam的小“秘密

、localparam以及其他的小“秘密”,我们要学习到更多东西。 今日说“法”,带你了解FPGA更多的小秘密,小技巧。 今日到此结束,愿大侠一切安好,有缘再见。
2023-05-17 16:26:53

SD卡挂载完成,不知道有没有能够测试SD卡读写速度的例子?

SD卡挂载完成,不知道有没有能够测试SD卡读写速度的例子?请知道的大侠赐教!!
2023-05-12 15:33:26

导热氧化铝填料如何搭配才能获得高导热硅胶?

α-氧化铝(下称氧化铝)导热粉体因来源广,成本低,在聚合物基体中填充量大,具有较高性价比,是制备导热硅胶垫片最常用的导热粉体。氧化铝形貌有球形、角型、类球形等,不同形貌对热界面材料的加工性能、应用性
2023-05-12 14:57:30385

α-氧化铝分散性影响-导热粉作为导热界面材料的填充料

导热粉体作为导热界面材料的填充料,用于保证新能源汽车的核心部件电池组、电控系统、驱动电机及充电桩的安全性能与使用寿命。伴随着新能源车销量的增长和电池结构的升级,导热界面材料有望迎来10年10
2023-05-12 14:54:30437

氮化铝导热绝缘片

E-PAD170两面的相变材料融合了导热垫片和导热膏的双重优点,在达到相变温度之前,具有和导热垫片类似的优点,具有良好的弹性和塑性,但当电子器件工作温度升高到熔点以上时,就会发生相变成为液态,从而
2023-05-11 10:05:24

车载散热用导热凝胶好还是导热胶好?

车载散热用导热凝胶好还是导热胶好?
2023-05-10 16:02:50450

开关反弹和其他肮脏的小秘密

开关可以做一些非常奇怪的事情。大多数工程师在将开关或继电器连接到数字系统后不久就知道了这个肮脏的小秘密。开关在数字系统的时间尺度上不会干净利落地成败。相反,典型的开关在打开或关闭所需的几十毫秒内进行
2023-05-08 11:11:35457

导热基础材料导热填料填充硅脂导热工艺

导热填料顾名思义就是添加在基体材料中用来增加材料导热系数的填料,常用的导热填料有氧化铝、氧化镁、氧化锌、氮化铝、氮化硼、碳化硅等;其中,尤以微米级氧化铝、硅微粉为主体,纳米氧化铝,氮化物做为高导热
2023-05-05 14:04:03984

pikascript移植报错不知道是哪里的问题?

想在fm33lx基础上应用pikaScript做脚本开发,通过env添加了pikaScript的软件包,工程里也出现了对应的文件,但是在编译的时候提示错误,不知道哪里的问题,请大咖指教。
2023-05-05 11:49:51

【杜科新材料】导热胶的应用

杜科新材料 随着信息技术的快速发展和生活水平的提高,人们对电子产品的质量有了更高的要求,市场对导热填充材料也有了更高的要求,芯片的散热、导热材料的填充都影响着产品的质量与使用寿命 杜科导热
2023-04-24 10:33:35839

LED导热硅脂会固化吗?固化后的导热硅脂还能正常发挥性能吗?

导热硅脂是一种不同于其它胶粘剂的材料、它不会固化、不会流淌、无粘性、是一种导热性、散热性优好的材料、出现固化多少导热硅脂品质较低导致、造成散热效果造成负面影、影响导热性能,对LED的工作寿命产生负面影响、无法充分发挥其较好的导热效果。
2023-04-21 17:34:461223

硬件发烧友的ChatGPT实用工具

多少人都不知道 的黑科技,我不允许你也不知道
2023-04-15 18:58:46562

如何解决导热聚氨酯灌封胶导热粉填料增稠、结块问题

在制作聚氨酯灌封胶制备过程中,导热粉烘了处理过,也加了除水剂,为什么还会出现粘度上升增稠,甚至固化的现象?东超新材料总结经分析,出现这种情况的原因之一可能是聚氨酯灌封胶导热粉体的表面物质与异氰酸
2023-04-14 17:55:52814

东超导热填料分享导热双面胶影响导热性都有哪些因素?

双面背胶导热垫片是一种新型的导热器件,具有导热性能好、粘合性强、尺寸稳定等特点。本文将通过分析双面背胶导热垫片的制备方法、导热性能、应用研究等方面来探讨其在电子产品中的应用。双面背胶导热垫片是通过
2023-04-14 17:09:46342

有机硅导热胶,具有粘接性能的导热材料

有机硅导热胶是由有机硅聚合物、高导热填料和催化剂等材料组合而成的,即能导热也可粘接,因此能够满足有粘接和散热需求的相关电子设备
2023-04-13 17:42:27638

MDK下99%用户都不知道的万能printf方法

本篇将介绍MDK下99%用户都不知道的万能printf方法。
2023-04-12 10:21:03994

导热硅凝胶的研究与应用进展

介绍了导热硅凝胶的组成和特点,分别阐述了导热硅凝胶在导热机制、渗油性、密着力性能等方面的研究进展。综述了导热硅凝胶在航空电子设备、5G电子设备、动力电池等方面的应用,最后对其发展方向进行展望。
2023-04-07 09:55:52661

宽带,猫,路由器你们知道是啥嘛

许多人知道在宽带家庭中,互联网需要路由器,但他们不知道哪个路由器在工作,或者不知道该路由器与Cat不同,因为在过去的几年中,当不使用路由器时,我们应该使用“cat””那么路由器和“猫”有什么区别?
2023-04-03 14:57:443666

绝缘高导热粘接剂导热填料应用领域及特点

导热填料其主要成份为纳米氮化硅镁、纳米碳化硅、纳米氮化铝、纳米氮化硼、高球形度氧化铝、纳米氮化硅(有规则取向结构)等多种超高导热填料的组合而成,根据每种材料的粒径、形态,表面易润湿性,掺杂分数,自身
2023-03-29 10:11:55531

SOLIDWORKS你不知道的小技巧

SOLIDWORKS圆弧长度标注 点智能标注,再选中该圆弧,然后分别点圆弧的两个端点,点击左键可以标注圆弧长度。
2023-03-27 14:34:39619

6.5W导热凝胶进入军工显示器领域

,生产的是特种军用显示器,裸眼立体显示器,属于国内顶级显示器制造商。客户之前使用的是进口导热系数8.0W的导热硅胶片,由于国际市场的卡脖子行为,迫于此,客户开始启用国产化导热材料进程。 2022年底,某光电有限公司研发工程师在百度搜索到罗工
2023-03-24 14:54:31478

GNSS模块有哪些类型?选型要考虑哪些因素?

GNSS模块目前在物联网领域越发火爆,很多商家在GNSS模块选择上有很大疑虑,不知道GNSS模块的种类有哪些,不知道如何选型,接下来就来介绍一下GNSS模块的种类有哪些?
2023-03-23 15:39:43465

已全部加载完成