电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电子发烧友网>今日头条>关于智能锁选购的四大误区的详细说明

关于智能锁选购的四大误区的详细说明

收藏

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论

查看更多

相关推荐

3KW工业变频器电路设计方案详细说明

3KW工业变频器电路设计方案详细说明
2024-03-19 08:33:0950

请教一个关于指纹控制板的不明芯片疑问?

请问一个关于指纹控制板的疑问。 图片中红色圈里这个“TFCCZ1\"的QFN-8芯片上什么芯片呢?
2024-03-15 16:54:59

CY8C6347FMI-BLD53T如何在PSoC63上配置唤醒引脚?

。 每个位对应一个唤醒引脚。 使用这些位似乎至少可以定义个唤醒引脚。 但是,我没有看到关于如何用这些位配置/定义唤醒引脚的详细说明 (MASK_HIBPIN).我查看了所有 PSoC6 相关文档
2024-03-06 06:05:38

华为发布Net5.5G智能云网的四大主力方案

2024年世界移动通信大会(MWC 2024)期间,华为针对智能化时代的需求发布了Net5.5G智能云网的四大主力方案。华为强调,网络质量对数字服务质量具有决定性影响,而当前智能化技术在转化为数字生产力方面仍有巨大潜力未被充分释放,因此网络升级变得至关重要。
2024-02-28 09:45:41101

小白学习FPGA的四大误区

1、不熟悉 FPGA的内部结构,不了解可编程逻辑器件的基本原理。FPGA为什么是可以编程的?恐怕很多菜鸟不知道,他们也不想知道。因为他们觉得这是无关紧要的。他们潜意识的认为可编程嘛,肯定就是像写软件一样啦。软件编程的思想根深蒂固,看到Verilog或者VHDL就像看到C语言或者其它软件编程语言一样。一条条的读,一条条的分析。如果这些菜鸟们始终拒绝去了解为什么FPGA是可以编程的,不去了解FPGA的内部结构,要想学会FPGA恐怕是天方夜谭。虽然现在EDA软件已经非常先进,像写软件那样照猫画虎也能综合出点东西,但也许只有天知道EDA软件最后综合出来的到底是什么。也许点个灯,跑个马还行。这样就是为什么很多菜鸟学了N久以后依然是一个菜鸟的原因。那么FPGA为什么是可以“编程”的呢?首先来了解一下什么叫“程”。启示“程”只不过是一堆具有一定含义的01编码而已。编程,其实就是编写这些01编码。只不过我们现在有了很多开发工具,通常都不是直接编写这些01编码,而是以高级语言的形式来编写,最后由开发工具转换为这种01编码而已。对于软件编程而言,处理器会有一个专门的译码电路逐条把这些01编码翻译为各种控制信号,然后控制其内部的电路完成一个个的运算或者是其它操作。所以软件是一条一条的读,因为软件的操作是一步一步完成的。而FPGA的可编程,本质也是依靠这些01编码实现其功能的改变,但不同的是FPGA之所以可以完成不同的功能,不是依靠像软件那样将01编码翻译出来再去控制一个运算电路,FPGA里面没有这些东西。FPGA内部主要三块:可编程的逻辑单元、可编程的连线和可编程的IO模块。可编程的逻辑单元是什么?其基本结构某种存储器(SRAM、FLASH等)制成的4输入或6输入1输出地“真值表”加上一个D触发器构成。任何一个4输入1输出组合逻辑电路,都有一张对应的“真值表”,同样的如果用这么一个存储器制成的4输入1输出地“真值表”,只需要修改其“真值表”内部值就可以等效出任意4输入1输出的组合逻辑。这些“真值表”内部值是什么? 就是那些01编码而已。如果要实现时序逻辑电路怎么办?这不又D触发器嘛,任何的时序逻辑都可以转换为组合逻辑+D触发器来完成。但这毕竟只实现了4输入1输出的逻辑电路而已,通常逻辑电路的规模那是相当的大哦。那怎么办呢?这个时候就需要用到可编程连线了。在这些连线上有很多用存储器控制的链接点,通过改写对应存储器的值就可以确定哪些线是连上的而哪些线是断开的。这就可以把很多可编程逻辑单元组合起来形成大型的逻辑电路。最后就是可编程的IO,这其实是FPGA作为芯片级使用必须要注意的。任何芯片都必然有输入引脚和输出引脚。有可编程的IO可以任意的定义某个非专用引脚(FPGA中有专门的非用户可使用的测试、下载用引脚)为输入还是输出,还可以对IO的电平标准进行设置。总归一句话,FPGA之所以可编程是因为可以通过特殊的01代码制作成一张张“真值表”,并将这些“真值表”组合起来以实现大规模的逻辑功能。不了解FPGA内部结构,就不能明白最终代码如何变到FPGA里面去的。也就无法深入的了解如何能够充分运用FPGA。现在的FPGA,不单单是有前面讲的那三块,还有很多专用的硬件功能单元,如何利用好这些单元实现复杂的逻辑电路设计,是从菜鸟迈向高手的路上必须要克服的障碍。而这一切,还是必须先从了解FPGA内部逻辑及其工作原理做起。 2、错误理解 HDL语言,怎么看都看不出硬件结构。HDL语言的英语全称是:Hardware Description Language,注意这个单词Description,而不是Design。老外为什么要用Description这个词而不是Design呢?因为HDL确实不是用用来设计硬件的,而仅仅是用来描述硬件的。描述这个词精确地反映了HDL语言的本质,HDL语言不过是已知硬件电路的文本表现形式而已,只是将以后的电路用文本的形式描述出来而已。而在编写语言之前,硬件电路应该已经被设计出来了。语言只不过是将这种设计转化为文字表达形式而已。但是很多人就不理解了,既然硬件都已经被设计出来了,直接拿去制作部就完了,为什么还要转化为文字表达形式再通过EDA工具这些麻烦的流程呢?其实这就是很多菜鸟没有了解设计的抽象层次的问题,任何设计包括什么服装、机械、广告设计都有一个抽象层次的问题。就拿广告设计来说吧,最初的设计也许就是一个概念,设计出这个概念也是就是一个点子而已,离最终拍成广告还差得很远。硬件设计也是有不同的抽象层次,每一个层次都需要设计。最高的抽象层次为算法级、然后依次是体系结构级、寄存器传输级、门级、物理版图级。使用HDL的好处在于我们已经设计好了一个寄存器传输级的电路,那么用HDL描述以后转化为文本的形式,剩下的向更低层次的转换就可以让EDA工具去做了,这就大大的降低了工作量。这就是可综合的概念,也就是说在对这一抽象层次上硬件单元进行描述可以被EDA工具理解并转化为底层的门级电路或其他结构的电路。在FPGA设计中,就是在将这以抽象层级的意见描述成HDL语言,就可以通过FPGA开发软件转化为问题1中所述的FPGA内部逻辑功能实现形式。HDL也可以描述更高的抽象层级如算法级或者是体系结构级,但目前受限于EDA软件的发展,EDA软件还无法理解这么高的抽象层次,所以HDL描述这样抽象层级是无法被转化为较低的抽象层级的,这也就是所谓的不可综合。所以在阅读或编写HDL语言,尤其是可综合的HDL,不应该看到的是语言本身,而是要看到语言背后所对应的硬件电路结构。如果看到的HDL始终是一条条的代码,那么这种人永远摆脱不了菜鸟的宿命。假如哪一天看到的代码不再是一行行的代码而是一块一块的硬件模块,那么恭喜脱离了菜鸟的级别,进入不那么菜的鸟级别。 3、FPGA本身不算什么,一切皆在 FPGA之外这一点恐怕也是很多学FPGA的菜鸟最难理解的地方。FPGA是给谁用的?很多学校解释为给学微电子专业或者集成电路设计专业的学生用的,其实这不过是很多学校受资金限制,卖不起专业的集成电路设计工具而用FPGA工具替代而已。其实FPGA是给设计电子系统的工程师使用的。这些工程师通常是使用已有的芯片搭配在一起完成一个电子设备,如基站、机顶盒、视频监控设备等。当现有芯片无法满足系统的需求时,就需要用FPGA来快速的定义一个能用的芯片。前面说了,FPGA里面无法就是一些“真值表”、触发器、各种连线以及一些硬件资源,电子系统工程师使用FPGA进行设计时无非就是考虑如何将这些以后资源组合起来实现一定的逻辑功能而已,而不必像IC设计工程师那样一直要关注到最后芯片是不是能够被制造出来。本质上和利用现有芯片组合成不同的电子系统没有区别,只是需要关注更底层的资源而已。要想把FPGA用起来还是简单的,因为无非就是那些资源,在理解了前面两点再搞个实验板,跑跑实验,做点简单的东西是可以的。而真正要把FPGA用好,那光懂点FPGA知识就远远不够了。因为最终要让FPGA里面的资源如何组合,实现何种功能才能满足系统的需要,那就需要懂得更多更广泛的知识。目前FPGA的应用主要是三个方向:第一个方向,也是传统方向主要用于通信设备的高速接口电路设计,这一方向主要是用FPGA处理高速接口的协议,并完成高速的数据收发和交换。这类应用通常要求采用具备高速收发接口的 FPGA,同时要求设计者懂得高速接口电路设计和高速数字电路板级设计,具备EMC/EMI设计知识,以及较好的模拟电路基础,需要解决在高速收发过程中产生的信号完整性问题。FPGA最初以及到目前最广的应用就是在通信领域,一方面通信领域需要高速的通信协议处理方式,另一方面通信协议随时在修改,非常不适合做成专门的芯片。因此能够灵活改变功能的FPGA就成为首选。到目前为止FPGA的一半以上的应用也是在通信行业。第二个方向,可以称为数字信号处理方向或者数学计算方向,因为很大程度上这一方向已经大大超出了信号处理的范畴。例如早就在2006年就听说老美将FPGA用于金融数据分析,后来又见到有将FPGA用于医学数据分析的案例。在这一方向要求FPGA设计者有一定的数学功底,能够理解并改进较为复杂的数学算法,并利用FPGA内部的各种资源使之能够变为实际的运算电路。目前真正投入实用的还是在通信领域的无线信号处理、信道编解码以及图像信号处理等领域,其它领域的研究正在开展中,之所以没有大量实用的主要原因还是因为学金融的、学医学的不了解这玩意。不过最近发现欧美有很多电子工程、计算机类的博士转入到金融行业,开展金融信号处理,相信随着转入的人增加,FPGA在其它领域的数学计算功能会更好的发挥出来,而我也有意做一些这些方面的研究。不过国内学金融的、学医的恐怕连数学都很少用到,就不用说用FPGA来帮助他们完成数学_运算了,这个问题只有再议了。第三个方向就是所谓的SOPC方向,其实严格意义上来说这个已经在FPGA设计的范畴之内,只不过是利用FPGA这个平台搭建的一个嵌入式系统的底层硬件环境,然后设计者主要是在上面进行嵌入式软件开发而已。设计对于FPGA本身的设计时相当少的。但如果涉及到需要在FPGA做专门的算法加速,实际上需要用到第二个方向的知识,而如果需要设计专用的接口电路则需要用到第一个方向的知识。就目前SOPC方向发展其实远不如第一和第二个方向,其主要原因是因为SOPC以FPGA为主,或者是在FPGA内部的资源实现一个“软”的处理器,或者是在FPGA内部嵌入一个处理器核。但大多数的嵌入式设计却是以软件为核心,以现有的硬件发展情况来看,多数情况下的接口都已经标准化,并不需要那么大的FPGA逻辑资源去设计太过复杂的接口。而且就目前看来SOPC相关的开发工具还非常的不完善,以ARM为代表的各类嵌入式处理器开发工具却早已深入人心,大多数以ARM为核心的SOC芯片提供了大多数标准的接口,大量成系列的单片机/嵌入式处理器提供了相关行业所需要的硬件加速电路,需要专门定制硬件场合确实很少。通常是在一些特种行业才会在这方面有非常迫切的需求。即使目前Xilinx将ARM的硬核加入到FPGA里面,相信目前的情况不会有太大改观,不要忘了很多老掉牙的8位单片机还在嵌入式领域混呢,嵌入式主要不是靠硬件的差异而更多的是靠软件的差异来体现价值的。我曾经看好的是 cypress的Psoc这一想法。和SOPC系列不同,Psoc的思想史载SOC芯片里面去嵌入那么一小块FPGA,那这样其实可以满足嵌入式的那些微小的硬件接口差异,比如某个运用需要4个USB,而通常的处理器不会提供那么多,就可以用这么一块FPGA来提供多的USB接口。而另一种运用需要6个 UART,也可以用同样的方法完成。对于嵌入式设计公司来说他们只需要备货一种芯片,就可以满足这些设计中各种微小的差异变化。其主要的差异化仍然是通过软件来完成。但目前cypress过于封闭,如果其采用ARM作为处理器内核,借助其完整的工具链。同时开放IP合作,让大量的第三方为它提供IP设计,其实是很有希望的。但目前cypress的日子怕不太好过,Psoc的思想也不知道何时能够发光。 4、数字逻辑知识是根本。 无论是FPGA的哪个方向,都离不开数字逻辑知识的支撑。FPGA说白了是一种实现数字逻辑的方式而已。如果连最基本的数字逻辑的知识都有问题,学习FPGA的愿望只是空中楼阁而已。而这,恰恰是很多菜鸟最不愿意去面对的问题。数字逻辑是任何电子电气类专业的专业基础知识,也是必须要学好的一门课。很多人无非是学习了,考个试,完了。如果不能将数字逻辑知识烂熟于心,养成良好的设计习惯,学FPGA到最后仍然是雾里看花水中望月,始终是一场空的。
2024-02-22 11:00:27

电源模块外壳材质详细说明 保护散热绝缘 AC电源模块 BOSHIDA

DC电源模块
稳控自动化发布于 2024-02-21 09:28:20

电源模块外壳材质详细说明 保护散热绝缘 AC电源模块

电源模块外壳材质详细说明 保护散热绝缘 AC电源模块 BOSHIDA 选择电源模块外壳材质时,需要考虑以下几个因素: 保护性能:外壳材质需要具有足够的强度和硬度,能够保护电源模块内部的电路和元件不受
2024-02-20 09:03:4490

谷歌测试搜索新功能:帮用户减少等待接通客服时间

根据谷歌的详细说明,当用户在Google搜索客服电话信息后,会在结果页面找到“Request a call”图表,提供了深入通信的意图和电话号码的填写位置。
2024-02-19 13:51:11102

工控变频器在节电节能中的误区

工控变频器(变频调速器)是一种用于调节交流电动机运行速度和输出功率的电子设备。通过改变电机输入电压的频率和幅值,变频器可以精确控制电动机的速度,从而实现节能效果。然而,在实际应用中,关于变频器
2024-02-16 17:23:001263

中日在制造业升级与智能制造领域深化合作

金壮龙部长对中国的工业发展状况做了详细说明。他指出,目前我国工业经济总体保持平稳增长趋势,传统行业的科技水平正在快速提升,智能制造的应用范围也逐渐扩大,数字经济的核心产业也日益繁荣,制造业的数字化转型也得到了极大推进。
2024-01-29 09:24:08138

简述温湿度试验箱的四大选购要点

温湿度试验箱和环境试验设备行业内任何设备没有什么差别,想要选购到一台性价比高的试验箱,就需要从各个方面来进行挑选。但是有很多企业是现在才需要使用到这样的设备,以前没有接触过这个行业,所以在采购的时候
2024-01-19 11:04:30168

关于电源性能的不同参数详解

电源规格详细说明了标题为“线路调整率”的参数的数字。结果发现,当线路或输入电压发生变化时,输出端可能会出现微小的变化。线路调整率图详细说明了这一变化。
2024-01-17 14:35:20194

锂电池放电误区 锂电池的使用注意事项

,以确保安全使用。本文将详细介绍锂电池放电的误区以及使用锂电池的注意事项。 首先,我们来看一下锂电池放电的误区。很多人错误地认为,锂电池可以完全耗尽再充电,这是非常错误的观念。实际上,锂电池并不建议被完全放空或充
2024-01-10 15:47:37209

低功耗设计的几个误区分享

就可能成为反复振荡的输入信号了,而MOS器件的功耗基本取决于门电路的翻转次数。如果把它上拉的话,每个引脚也会有微安级的电流,所以最好的办法是设成输出(当然外面不能接其它有驱动的信号) 误区:这款
2024-01-09 08:04:28

14通道自动灵敏度校准低功耗电容触摸传感器动能世纪芯片Si314

刷卡解锁、一步开门、远程监测、遇到风险自动宣布警报、智能联动等人们关于门锁各种看似遥不可及的梦想,因为智能的呈现一一变成实际。由于智能门锁的不断进化,人们关于智能家居也有了更多梦想和期待。将触摸屏
2024-01-08 10:40:34

ADRV9009的datasheet中各等级电压的功耗是多少?

关于ADRV9009的datasheet中没有详细说明各等级电压的功耗是多少,demo板中只说12V电源需要1A,那1V3_ANLG、1V3_DIG、1V8、3V3这4个等级的电源,各自需要的电流
2024-01-05 08:36:53

开关电源EMC设计中的常见误区有哪些

。本文将详细介绍开关电源EMC设计中的常见误区及相应的解决方法。 一、忽视滤波器设计误区分析:在开关电源的设计过程中,有些工程师可能会忽视滤波器的设计,认为滤波器对EMC性能的影响不大。 解决方法:滤波器是开关电源中用于抑制
2023-12-30 16:41:00525

十六种常见PCB焊接缺陷,有哪些危害

下面就常见的焊接缺陷、外观特点、危害、原因分析进行详细说明
2023-12-28 16:17:09190

国扬智能光模块使用说明

电子发烧友网站提供《国扬智能光模块使用说明.ppt》资料免费下载
2023-12-26 10:02:120

MES需求六大常见误区

电子发烧友网站提供《MES需求六大常见误区.docx》资料免费下载
2023-12-21 11:08:550

什么是智能安全帽,如何选购智能安全帽,智能安全帽的主要功能

什么是智能安全帽,如何选购智能安全帽,智能安全帽的主要功能
2023-12-20 09:29:24359

例说Verilog HDL和VHDL区别

Verilog和VHDL之间的区别将在本文中通过示例进行详细说明。对优点和缺点的Verilog和VHDL进行了讨论。
2023-12-20 09:03:54465

示波器探头的使用误区

示波器探头是电子测试中常用的工具,但在使用过程中存在一些常见误区。小编将详细介绍这些误区,帮助您更好地理解和使用示波器探头。           误区一:探头匹配问题 许多示波器探头在连接
2023-12-18 14:49:58191

电工接线的九大误区及解决方案

电工接线的九大误区及解决方案  电工接线是电工在实施电力工程时不可或缺的一项工作。正确的接线可以确保电路的安全运行,而错误的接线则可能导致电路故障、火灾等严重问题。然而,由于对电路接线知识的误解
2023-12-15 10:31:39292

降低Transformer复杂度O(N^2)的方法汇总

首先来详细说明为什么Transformer的计算复杂度是 。将Transformer中标准的Attention称为Softmax Attention。令 为长度为 的序列, 其维度为 , 。 可看作Softmax Attention的输入。
2023-12-04 15:31:22341

在使用AD4114过程中遇到的问题,请帮忙解答

和连续读模式,读回来通道按顺序扫描的,每个通道都能读到,是否以上设置有问题?? 2.AD4114的OFFSET寄存器在校准时应该怎么去操作? 关于校准寄存器OFFSET值设置是否更详细说明,不清楚如何去
2023-12-04 08:06:43

模拟设计中噪声分析的11个误区

电子发烧友网站提供《模拟设计中噪声分析的11个误区.pdf》资料免费下载
2023-11-28 10:25:190

关于图像传感器图像质量的四大误区!你踩过几个坑?

关于图像传感器图像质量的四大误区!你踩过几个坑?
2023-11-27 16:56:29198

关于TCP协议总结的硬核干货

本文给出TCP报文格式的详细说明,介绍网络数据包传递中如何进行地址解析、建立TCP连接的三次握手过程以及断开TCP连接的四次挥手过程。
2023-11-17 09:26:30183

选购消费级路由器技巧!

选购消费级路由器技巧!
2023-11-16 11:32:43209

服务器小白选购须知

,对于小白用户来说,如何选购适合自己的服务器仍然是一个令人困惑的问题。本文将为您介绍一些关于服务器选购的基本知识和注意事项,帮助您更好地选择适合自己的服务器。
2023-11-15 09:40:30256

人工智能大模型、应用场景、应用部署教程超详细资料

人工智能是IC行业近几年的热词,目前此技术已经有很多成熟的模型和落地案例。在此跟大家做个分享,更多详细资料,请自行搜索:【展锐坦克邦】,坦克邦-智算天地集算法模型、部署说明于一体,为广大客户提供了
2023-11-13 14:49:07

西门子S7-200SMART MODBUS通信实例

编程时使用SM0.1调用子程序MBUS_INIT进行初始化,使用SM0.0调用MBUS_SLAVE,并指定相应参数。关于参数的详细说明,可在子程序的局部变量表中找到。
2023-11-13 14:33:08903

食堂智能留样柜人脸智能留样冰箱带风冷无霜支持批发食堂留样机

智能食品留样柜是一款具有法律依据的食安溯源设备。通过智能食品留样柜,可解决传统的食物留样容易被篡改,无法溯源的痛点;智能食品留样柜支持远程管理,只有授权的账号才有权限进行操作,其自带电插,带监控
2023-11-13 11:44:25

TCP协议详细解析

TCP是TCP/IP协议族中一个最核心的协议,它向下使用网络层IP协议,向上为应用层HTTP、FTP、SMTP、POP3、SSH、Telnet等协议提供支持。本文给出TCP报文格式的详细说明,介绍网络数据包传递中如何进行地址解析、建立TCP连接的三次握手过程以及断开TCP连接的四次挥手过程。
2023-11-03 09:14:34793

基于Android系统的连连看详细设计说明

电子发烧友网站提供《基于Android系统的连连看详细设计说明书.doc》资料免费下载
2023-10-30 10:12:440

避免在高低温试验箱选购中走入误区的几个关键点

避免在高低温试验箱选购中走入误区的几个关键点
2023-10-26 10:27:20220

怎样用现成的Eclipse插件来调试AT32系列芯片以及SLIB的配置范例

本篇应用指南主要描述怎样用现成的Eclipse插件来调试AT32系列芯片以及SLIB的配置范例。本文档仅以AT32F403A为例进行说明关于AT32F403A SLIB的详细说明,请详阅《AT32F403ASecurity Library Application Note》。
2023-10-24 07:41:07

模拟设计中噪声分析的11个误区,你知道吗?

的影响。但是,噪声分析也存在着许多误区,如果不加以纠正,会影响电路设计的准确性和可靠性。下面,我们来详细了解一下模拟设计中噪声分析的11个误区。 一、忽略主要噪声源 在进行噪声分析时,很多设计者通常只关注单个电路单元
2023-10-20 14:37:58163

KT148A语音芯片的组合播放详细说明 包含语音制作 压缩 下载 播放

KT148A语音芯片的组合播放详细说明 ,包含:语音制作 、压缩、下载、播放 这里总共的步骤大概分为5步,其实也很简单 组合播放的原理,其实就是KT148A一次性接收需要播放的语音组合,存入
2023-10-13 11:17:01369

黑金Spartan6开发板的Verilog教程详细说明

黑金Spartan6开发板的Verilog教程详细说明
2023-10-11 18:02:451

DTX附件选购指南

FLUKE DTX附件选购指南 官方
2023-10-09 10:55:120

TMS320C6748开发例程使用手册

一些关于tms320c6748的开发例程,开发板用的是创龙的开发板,流程都详细说明了原因和应有现象了,需要注意的情况也在备注中体现了,在开发过程中敬请注意。
2023-10-09 08:33:45

TMS320C6748开发例程使用手册新手练习硬件开发指南

一些关于tms320c6748的开发例程,开发板用的是创龙的开发板,流程都详细说明了原因和应有现象了,需要注意的情况也在备注中体现了,在开发过程中敬请注意。
2023-10-09 06:26:27

关于子面板调用?

刚入手,想做一个界面切换的功能,子面板调用的时候发现单独运行子面板的时候子面板在正中间,但是放在其他界面调用的时候就感觉原点不一样,整个界面不见了或者不在正中间。!!研究了一天爷没找到解决办法。有没有大哥来个详细说明的?1696770748657.jpg
2023-10-08 21:14:16

教你DIY六通道RC控制器

包含代码、详细说明、物料表Diy arduino rc接收器和发射器,六通道强大功能!
2023-09-26 08:08:35

旋转编码器如何工作?如何与Arduino-HowToMechanicronics一起使用?

包含详细说明+代码在本教程中,我们将学习旋转编码器的怎样工作的,以及如何使它与Arduino配合使用。旋转编码器是一种位置传感器,用于确定旋转轴的角度位置。
2023-09-26 07:52:23

DIY电动摄影滑轨

遥控控制电动滑轨,拍出大片感觉!资料代码一应俱全。包含详细说明+物料表+代码+3D打印资料
2023-09-26 07:27:45

电子管的代换资料详细说明

本文档的主要内容详细介绍的是电子管的代换资料详细说明
2023-09-26 07:24:46

无感无刷直流电机如何设计电调的详细资料说明

本文档的主要内容详细介绍的是无感无刷直流电机如何设计电调的详细资料说明。首先要搞清楚一件基本的事情:我们只是来搞电调的,而不是去设计电机的。所以不要被一些无刷电机教材一上来那些林林总总的关于什么磁路
2023-09-26 07:23:37

基于NR24L01收发器模块组成的Arduino无线网络

学习如何构建由多个NR24L01收发器模块组成的Arduino无线网络。包含相关代码+线路图+详细说明
2023-09-25 07:40:50

超酷机械电子钟!

数个点击控制机械结构,组成Arduino机械电子钟!下载包含相关代码+线路图+详细说明观看视频:https://www.icxbk.com/video/detail/1206.html
2023-09-25 07:28:12

制作红外激光感应的雷达组件

制作红外激光感应的雷达组件!包含代码、详细说明
2023-09-22 07:49:01

电机控制同步电角度测试说明

在使用 ST FOC 电机库时,当使用 Hall 信号作为位置信号时,需要输入同步电角度数据,这个数据根据当前使用电机的特性进行输入,会在每次 Hall 信号变化时同步电角度,如果角度偏差较大时会影响控制效果,可能带来效率或者电机的震荡,初始测试还是有必要的,本文详细说明测试注意事项以及测试方法。
2023-09-11 07:43:13

KT142C-sop16语音芯片ic的串口指令详细说明_默认9600指令可设

KT142C-sop16语音芯片ic的串口指令详细说明_默认9600指令可设
2023-09-07 12:00:04382

工业机器人应用的十大误区(一)

避免的十大误区误区一:低估了有效负荷和惯性机器人应用的误区,排在第一位的是低估了有效负荷和惯性需求。通常大多是由于在计算负荷时没有包括机械臂末端所装工具的重量导致
2023-09-05 08:08:44383

模拟设计中噪声分析的误区

噪声是模拟电路设计的一个核心问题,它会直接影响能从测量中提取的信息量,以及获得所需信息的经济成本。遗憾的是,关于噪声有许多混淆和误导信息,可能导致性能不佳、高成本的过度设计或资源使用效率低下。今天我们就聊聊关于模拟设计中噪声分析的11个由来已久的误区
2023-08-30 10:33:11263

NUC505的启动方式有没有相关文档说明?

NUC505支持多种启动方式, 每种启动的方式和流程,有没有相关文档说明? 官网没有找到, 参考文档也没有详细说明
2023-08-29 06:27:01

钽电容替代电解电容的误区

,这篇文章将详细介绍钽电容替代电解电容的误区误区一:钽电容可以完全替代电解电容 钽电容和电解电容虽然都是电解质电容器,但是它们的结构和性质还是有很大的区别。电解电容是以金属铝或钨作为正极,通过电化学氧化成铝
2023-08-25 14:27:591750

GICv3和GICv4软件概述

规范GIC架构版本3.0和4.0的补充。 它不是替代品或替代品。 有关寄存器和行为的详细说明,请参阅ARM®通用中断控制器架构规范GIC架构版本3.0和4.0。
2023-08-22 08:24:30

直线导轨的选购要素

直线导轨的选购要素
2023-08-18 17:44:46405

CORELINK™DMA-330周期型号9.1.0用户指南

模式下运行。 有关AXI协议的详细说明,请参阅AMBA AXI协议规范。 有关APB协议的详细说明,请参阅AMBA APB协议规范。 本节总结了周期模型的功能与硬件的功能,以及周期模型的性能和准确性
2023-08-16 06:41:45

Arm Corstone SSE-310与Cortex-M85和Ethos-U55:MPS3的示例子系统

本文档概述了在MPS3开发板上使用的Corstone SSE-310子系统在FPGA中的实现。它详细说明了设计中使用的实现和配置选项
2023-08-10 06:01:30

构成电路必备四大件,是哪四大吗?

电源开关接线电压
学习电子知识发布于 2023-08-02 14:38:29

节 人工智能美颜商业模式的误区#人工智能

AI人工智能
未来加油dz发布于 2023-07-27 14:47:35

MOS管开关电路图 MOS管开关电路设计

在设计MOS管开关电路时,就要充分了解MOS管的工作原理。下面咱们来详细说明
2023-07-20 09:40:171102

智能制造的八大误区

智能制造误区有二:重单机自动化,轻系统柔性化,很多制造企业非常重视购买数控加工中心或自动化加工设备,不少企业海配备了上下料的工业机器人,但是往往还是单机自动化,还没有应用柔性制造系统MES
2023-07-12 16:28:50338

如何选购焊接机器人

关于如何选购焊接机器人,今天专业工业机器人集成商无锡金红鹰小编将为大家详细介绍:购买焊接机器人之前我们需要确定所需购买的焊接机器人种类,确定完机器人类型后我们需要根据机器人通用技术指标和焊接机器人特殊技术指标两大指标来选购合适的焊接机器人。
2023-07-05 13:53:32546

中小企业选择mes系统如何避开误区

一、MES系统选型的误区 MES系统选型是制造业中的重要环节,它能够将ERP系统中的计划与实际生产联系起来,实现生产过程的实时监控与管理。在MES系统选型时,中小企业经常存在一些常见的误区: 1.
2023-07-04 14:39:26188

如何选购PLC产品

那么,如何选购PLC产品呢?   1、系统规模首先应确定系统用PLC单机控制,还是用PLC形成网络,由此计算PLC输入、输出点。数,并且在选购PLC时要在实际需要点数的基础上留有一定余量(10%)。
2023-07-03 16:25:26394

开源RISC-V处理器(蜂鸟E203)学习笔记

需要使用我分享的EDA虚拟机:IC_EDA_ALL虚拟机(丰富版)详细说明.
2023-06-29 10:21:172488

关于图像传感器图像质量的四大误区

当前我们对图像传感器的依赖程度超出了大多数人的想象。图像传感器应用在汽车上,帮助我们避免碰撞;应用于建筑监控,防止非法入侵;应用于生产线,检查产品的质量。有趣的是,人们经常按照像素大小和分辨率等非常简单的指标,对图像传感器进行分类,但为不同应用选择合适的传感器要比这复杂得多。
2023-06-29 10:06:53152

什么是自?#自

学习电子知识发布于 2023-06-26 19:35:52

美军人工智能的生态系统变化综述

2022财年国防授权法案在“国家安全委员会关于人工智能的建议(第52章)”中,设立了一些和数字生态系统相关的新节:国防部应制定计划,并详细说明所需的必要投资,以实现强大和现代化的数字生态系统(5203节);
2023-06-20 11:30:54663

求分享Rocket 2.0智能的配置手册

您好,我有一个 Rocket 2.0 智能,正在寻找安装该装置本身的手册 它带有配置手册,但与实际安装无关
2023-05-30 06:25:10

ddr电源详细说明

2023-05-29 12:35:56

FPGA AXI4协议学习笔记(三)

上文FPGA IP之AXI4协议1_信号说明把AXI协议5个通道的接口信息做了说明,本文对上文说的信号进行详细说明
2023-05-24 15:06:41669

拉力试验机安装说明书,安装拉力试验机有哪些方法步骤?

拉力试验机安装说明书是指对拉力试验机的安装过程进行详细说明的一本手册。该手册包括了安装前的准备工作、安装过程中需要注意的事项、安装后的验收标准等内容。正确的安装可以保证拉力试验机的正常运行,从而保证测试结果的准确性。
2023-05-23 14:37:46548

如何从github获得的Bluebox存储库?

指示 bitbake 丢弃 codeaurora URI 并仅继续使用 github 的 URI 没有详细说明,也没有在 yoctoproject.org 上描述,其中 var 是提到但它的使用并没有
2023-05-06 06:23:58

人工智能训练数据集:误区、挑战与应对方法

人工智能训练数据集是人工智能技术发展中至关重要的一环。然而,在构建和使用数据集时,我们常常会遇到一些误区和挑战,这些问题可能会影响数据集的质量和使用效果。本文将探讨人工智能训练数据集的误区、挑战以及应对方法。
2023-04-27 17:50:09648

求分享ESP32 AT + BLEHIDMUS指令参数详细使用说明

我在使用 ESP32AT 命令模拟 BLE 鼠标时遇到 了一个问题,在 AT 指令集中查到了 AT+BLEHIDMUS=,,,指令参数的简单说明, 但实际使用中不清楚< wheel
2023-04-24 09:08:43

关于S32K1偏压环境温度说明,是不是芯片外壳温度?

大家好 关于S32K1偏压环境温度说明,是不是芯片外壳温度
2023-04-23 06:21:52

关于 H8SX、H8S 和 H8 系列 V.7.00 Release 00 的 C/C++ 编译器包的说明

关于 H8SX、H8S 和 H8 系列 V.7.00 Release 00 的 C/C++ 编译器包的说明
2023-04-20 19:39:130

求分享链接器文件(.ld)的详细文档?

我现在正在使用 S32R45EVB 进行开发。你能给我提供一些关于链接器文件(.ld)的详细文档吗?
2023-04-18 06:14:35

为什么MFR4310E1MAE40型号的丝印是1M63J而不是0M63J?

为什么MFR4310E1MAE40型号的丝印是1M63J而不是0M63J?说明书里有详细说明,怎么看?
2023-04-14 06:09:49

关于PCB差分走线的五个常见误区

500Mils 的差分走线,在3 米之外的辐射能量衰减已经达到60dB,足以满足FCC 的电磁辐射标准,所以设计者根本不用过分担心差分线耦合不够而造成电磁不兼容问题。  误区  差分曼切斯特编码并不是
2023-04-12 15:15:48

JSCC精研变频器B150使用说明

1、 B150外观,详细说明书可登录官网2、 B150电气特性:输入电压220V,功率1.5KW 3、 B150接线图 4、 参数设置: 5、 参数清单
2023-04-10 10:26:430

Xilinx FPGA 开发流程及详细说明

不多说,上货。Xilinx FPGA 开发流程及详细说明本篇目录1. 设计前准备2. 建立工程3. 输入设计4. 综合分析5. RTL仿真6. 锁定管脚7. 布局布线8. 生成配置文件并下载9.
2023-03-30 19:04:10

ISE 14.7 安装教程及详细说明

本系列将带来FPGA的系统性学习,从最基本的数字电路基础开始,最详细操作步骤,最直白的言语描述,手把手的“傻瓜式”讲解,让电子、信息、通信类专业学生、初入职场小白及打算进阶提升的职业开发者都可以有
2023-03-29 21:28:27

90*130

说明书 90*130
2023-03-28 15:15:19

Pegasus智能家居开发套件

HiHope 满天星智能家居开发套件
2023-03-28 13:07:10

T100智能焊台

智能焊台,电源功率∶108W, 加热功率∶72W, 产品尺寸∶120mm+88mm+38mm,输入交流电压 AC110~240V
2023-03-28 13:06:18

关于图像传感器图像质量的四大认知误区

当前我们对图像传感器的依赖程度超出了大多数人的想象。图像传感器应用在汽车上,帮助我们避免碰撞;应用于建筑监控,防止非法入侵;应用于生产线,检查产品的质量。有趣的是,人们经常按照像素大小和分辨率等非常简单的指标,对图像传感器进行分类,但为不同应用选择合适的传感器要比这复杂得多。
2023-03-27 16:12:50403

已全部加载完成