电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电子发烧友网>制造/封装>电子技术>摩尔的极限——基于单元原子半导体的固态量子计算设备

摩尔的极限——基于单元原子半导体的固态量子计算设备

收藏

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论

查看更多

相关推荐

半导体芯片继任者:硅光学芯片的前世今生

早在上世纪九十年代,IT从业者就开始为半导体芯片产业寻找继任者。光子计算量子计算、生物计算、超导计算等概念一时间炙手可热,它们的目标都是在硅芯片发展到物理极限后取而代之,以延续摩尔定律。##把复杂
2015-03-18 09:48:516721

摩尔定律时代落幕,半导体行业何去何从?

 下个月即将出版的国际半导体技术路线图,不再以摩尔定律为目标了。全球半导体行业将正式认可一个已经被讨论许久的问题:从上世纪60年代以来一直在推动IT行业发展的摩尔定律正在走向终结。正式抛弃摩尔定律的半导体行业将何去何从?
2016-02-22 09:23:241002

摩尔定律死去,半导体怎么办?

  当台积电与三星都已经积极将制程推移至7 纳米时,业界一面看着半导体巨擘比划技术武力,一面担忧着摩尔定律的未来。《MIT Technology Review》就以一篇「摩尔定律已死,接下来怎么办?」文章,探讨摩尔定律未来。
2016-05-23 10:13:201423

IBM量子计算研究取得突破,科学家可以控制单个原子

IBM在量子计算领域取得了突破,它展示了一种控制单个原子量子行为的方法。这一发现为量子计算展示了一个新的基石。
2019-10-27 23:02:573674

5/18最新上线企业 职位推荐——【摩尔精英半导体招聘】

`摩尔精英半导体招聘 最新上线企业 职位推荐:Infineon Technologies AGSenior Engineer - Industrial Engineering8K-13K/无锡5年
2016-05-18 12:34:19

半导体设备论坛新人

大家好 我是新人 论坛里 有没有对半导体工艺熟悉的 工艺上涉及到的设备有了解的 跪求收我为徒!!!!
2013-06-28 10:58:29

半导体制程

什么呢?一般固体材料依导电情形可分为导体半导体及绝缘体。半导体通常采用矽当导体,因为化学元素的矽晶体内,每个原子都能贡献四个价电子,而矽原子内部原子核带有四个正电荷。相邻原子间的电子对,构成了原子
2018-11-08 11:10:34

半导体塑封设备

本人小白,最近公司想上半导体器件的塑封生产线,主要是小型贴片器件封装,例如sot系列。设备也不需要面面俱到,能进行小规模正常生产就行。哪位大神能告知所需设备的信息,以及这些设备的国内外生产厂家,在此先行感谢!
2022-01-22 12:26:47

半导体常见的产品分类有哪些

半导体材料半导体的功能分类集成电路的四大类
2021-02-24 07:52:52

半导体技术天地

请教下以前的[半导体技术天地]哪里去了
2020-08-04 17:03:41

半导体景气关键指标下滑 半导体设备大厂首当其冲

半导体景气关键指标北美半导体设备制造商接单出货比(B/B值),8月虽站上五个月来新高达1.06,但国际半导体设备材料协会(SEMI)预警未来几个月将下滑,国际一线半导体设备大厂营运首当其冲。  B
2015-11-27 17:53:59

半导体材料的特性与参数

  半导体材料的导电性对某些微量杂质极敏感。纯度很高的半导体材料称为本征半导体,常温下其电阻率很高,是电的不良导体。在高纯半导体材料中掺入适当杂质后,因为杂质原子提供导电载流子,使材料的电阻率大为
2013-01-28 14:58:38

半导体清洗设备

苏州晶淼专业生产半导体、光伏、LED等行业清洗腐蚀设备,可根据要求定制湿法腐蚀设备。晶淼半导体为国内专业微电子、半导体行业腐蚀清洗设备供应商,欢迎来电咨询。电话:***,13771786452王经理
2016-09-05 10:40:27

半导体湿法腐蚀设备

苏州晶淼半导体设备有限公司致力于向客户提供湿法制程刻蚀设备、清洗设备、高端PP/PVC通风柜/厨、CDS化学品集中供液系统等一站式解决方案。我们的产品广泛应用与微电子、半导体、光伏、光通信、LED等
2016-09-06 13:53:08

半导体激光器的发展

之一摩尔曾在1965年作出预言:半导体将会得到高速发展,电子学会随之获得广泛的普及,渗透到宽广的应用领域中。从半个世纪之后再往回看,这一预言早已得到了完美印证。虽然光纤激光器优势市场潜力很大,不过
2019-05-13 05:50:35

半导体的定义及其作用

半导体的重要性都是非常巨大的。大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关联。集成电路是一种微型电子器件或部件,采用一定的工艺,把一个电路中所需的晶体管
2021-09-15 07:24:56

半导体的导电特性

,导电能力明显改变。2. 本征半导体制作半导体器件时用得最多的半导体材料是硅和锗,它们原子核的最外层都 有4个价电子。将硅或锗材料提纯(去掉杂质)并形成单晶体后,所有原子在空间 便基本上整齐排列。半导体
2017-07-28 10:17:42

半导体的导电特性

,导电能力明显改变。2. 本征半导体制作半导体器件时用得最多的半导体材料是硅和锗,它们原子核的最外层都 有4个价电子。将硅或锗材料提纯(去掉杂质)并形成单晶体后,所有原子在空间 便基本上整齐排列。半导体
2018-02-11 09:49:21

半导体芯片产业的发展趋势

国际半导体芯片巨头垄断加剧半导体芯片产业呈现三大趋势
2021-02-04 07:26:49

半导体行业的里程碑“摩尔定律”竟是这样来的

戈登·摩尔(GordonMoore)半个世纪以来,半导体行业飞速发展,在半导体(IC)工业界也涌现了很多实力雄厚的企业。而这条揭示信息技术进步的定律却依然有效,甚至有人认为它的影响力还将持续到2020
2016-07-14 17:00:15

摩尔定律对半导体行业的加速度已经明显放缓

半导体行业在摩尔定律的“魔咒”下已经狂奔了50多年,一路上挟风带雨,好不风光。不过随着半导体工艺的特征尺寸日益逼近理论极限摩尔定律对半导体行业的加速度已经明显放缓。未来半导体技术的提升,除了进一步
2019-07-05 04:20:06

摩尔定律推动了整个半导体行业的变革

1965年4月19日,36岁的戈登·摩尔在《电子杂志》中预言:集成电路中的晶体管数量大约每年就会增加一倍。十年过后,摩尔根据实际情况对预言进行了修正,把“每年增加一倍”改为“每两年增加一倍”。半导体
2019-07-01 07:57:50

量子计算机或将提前实现

Martinis)在去年的采访中表示,在几年之内,模拟量子计算芯片就有望问世。  谷歌团队用模拟量子计算机制构建了一个超导量子芯片来模拟9个相互之间存在磁力作用的原子。这种设计方法使得之前为数字量子计算
2016-06-13 10:31:53

量子力学基础理论经典之二 原子量子理论

本帖最后由 ygpotsyyz 于 2020-7-10 16:26 编辑 量子力学基础理论经典之二原子量子理论量子力学应用于当今的量子计算和通讯,其速度和能力有目共睹,众所周知,这里我们
2020-07-09 16:01:41

量子力学的固态物理应用

世界名著经典之量子力学的固态物理应用章回 12 固态物理的应用Pg.215------------------------------------------1. 导论在许多方面一个固体就像是一个
2020-09-06 14:13:02

量子力学经典之固态物理应用

本帖最后由 ygpotsyyz 于 2020-8-6 21:30 编辑 量子力学经典之固态物理应用量子力学传统经典为现代乃至当今量子计算与通讯之基础,理论与实践相结合又一经典,固态物理应用。图文内容符合国际标准:大湾区2020-8-6
2020-08-06 21:03:47

量子力学经典理论则五 量子力学的原子理论应用

?。---------------------------------------***************************************11章 量子力学的原子理论应用解答温习操作因子定义为。。。?R=d**2/dr**2+2/r*d/dr,(二次单元偏微分方程)?。。。且?A=l(l+1
2020-07-26 09:16:01

量子是个啥?量子计算机有啥用?

写在前面此文觉得非常有逻辑性,而且有很多量子计算方面的常识介绍。大部分资料都是网络公开的,这里做了一个汇集。因此,转发到博客里。文章目录(一)量子是个啥?(二)各种量子技术都是啥?(三)量子计算机有
2021-07-27 07:19:03

量子

机可以模拟原子和分子之间的相互作用,帮助科学家设计新材料、药物,甚至加速新材料的发现过程。这将有助于推动科学研究的进展,加快新技术的开发。 总的来说,量子计算机的梦想是通过利用量子力学的奇特性质,解决传统计算
2024-03-13 18:18:29

量子通信与量子计算的区别在哪里?

量子的基本概念是什么?量子的性质是什么?其基本原理是什么?量子通信与量子计算的区别在哪里?
2021-06-17 10:55:52

IC芯片的密度和计算机的速度能够一直按照摩尔定律前行吗?

芯片——摩尔定律的传奇(下)多年来,集成电路(IC)一直按照摩尔定律前行。但是,IC芯片的密度和计算机的速度能够一直按照摩尔定律前行吗?又有哪些物理极限和技术极限需要突破?最小晶体管到底可以由多少个原子构成?是否有能够替代硅的电子集成制造技术?这些问题困惑并激励着人们去
2021-07-22 09:57:06

N型与P型半导体

N型半导体也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。  在纯净的电子发烧友体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。在N型半导体
2016-10-14 15:11:56

QICK 硬件旨在弥合经典和量子通信差距

原子粒子之间的通信成为可能。虽然量子比特在量子力学层次上工作,但是操作和测量它们仍然是通过传统的半导体电子学在经典物理层次上完成的。目前,只有使用复杂和专有的量子计算控制系统(QCCS)才能
2022-06-16 14:39:29

半导体行业2016年度报告》即将来袭|摩尔精英

`关注摩尔精英微信公众号MooreRen获取《半导体行业2016年度报告》,参与2016年半导体人薪资测评即有机会获得华米手表、小米手环2、上千元红包等新年贺礼!`
2016-12-14 16:39:59

半导体行业2016年度薪资报告》来袭|摩尔精英

` 本帖最后由 MooreElite 于 2016-12-16 19:38 编辑 关注摩尔精英微信公众号MooreRen获取《半导体行业2016年度报告》,参与2016年半导体人薪资测评即有机会获得华米手表、小米手环2、上千元红包等新年贺礼!`
2016-12-16 16:17:28

《炬丰科技-半导体工艺》GaN 半导体材料与器件手册

书籍:《炬丰科技-半导体工艺》文章:GaN 半导体材料与器件手册编号:JFSJ-21-059III族氮化物半导体的光学特性介绍III 族氮化物材料的光学特性显然与光电应用直接相关,但测量光学特性
2021-07-08 13:08:32

量子计算机重构未来 | 阅读体验】 跟我一起漫步量子计算

首先感谢发烧友提供的试读机会。 略读一周,感触颇深。首先量子计算机作为一种前沿技术,正逐步展现出其巨大的潜力,预示着未来社会和技术领域的深刻变革。下面,我将从几个方面探讨量子计算机如何重构我们
2024-03-13 19:28:09

量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

作为零基础初学级的量子小白,对神秘诡异的量子世界充满了好奇。说起量子计算机,我有许多问号,量子计算机的工作原理是什么?它和电子计算机有什么区别?量子计算机如何编程?内部结构是怎样的?量子计算
2024-03-13 17:19:18

量子计算机重构未来 | 阅读体验】+ 初识量子计算

欣喜收到《量子计算机——重构未来》一书,感谢电子发烧友论坛提供了一个让我了解量子计算机的机会! 自己对电子计算机有点了解,但对量子计算机真是一无所知,只是听说过量子纠缠、超快的运算速度等等,越发
2024-03-05 17:37:23

量子计算机重构未来 | 阅读体验】+量子计算机的原理究竟是什么以及有哪些应用

本书内容从目录可以看出本书主要是两部分内容,一部分介绍量子计算机原理,一部分介绍其应用。 其实个人也是抱着对这两个问题的兴趣来看的。 究竟什么是量子计算机相信很多读者都是抱着这个疑问
2024-03-11 12:50:10

世界先进的用以量子力学研究的基础设施

` 世界先进的用以量子力学研究的基础设施量子力学开创了量子计算和通讯使人们的日常生活得以改善,发生了翻天地覆的变化,蒸蒸日上!示意了用于量子力学科学探索和研究的设想的基础设施。一. 爱因斯坦的过渡
2020-07-16 08:56:40

为什么说宽带隙半导体的表现已经超越了硅?

50多年前硅(Si)集成电路的发明意义重大,为我们当前所享受的现代计算机和电子产品时代铺平了道路。但是正如俗话所说,天下没有不散的筵席,现在存在疑问的是,硅在半导体行业的霸主地位将何时终结?据
2019-07-30 07:27:44

为安徽量子计算锦上添花的大时代成像技术怎么样

无比困难且耗费时间,而且可能会损坏芯片本身。  新的成像技术对磷-硅量子计算机的实现奠定了基础,因为人们能把扫描微波显微镜集成到现有的探测仪器中。这将大大加快三维结构的制造速度,因为该技术也能被应用于光刻工艺中原子掺杂的迭代控制。
2017-09-04 10:52:14

为安徽量子计算锦上添花的大时代成像技术怎么样

过程已经变得无比困难且耗费时间,而且可能会损坏芯片本身。   新的成像技术对磷-硅量子计算机的实现奠定了基础,因为人们能把扫描微波显微镜集成到现有的探测仪器中。这将大大加快三维结构的制造速度,因为该技术也能被应用于光刻工艺中原子掺杂的迭代控制。
2017-09-04 15:52:27

什么是基于SiC和GaN的功率半导体器件?

模型包括与电路仿真程序链接的半导体结构的二维有限元仿真模型。然而,这类仿真需要大量的计算能力,不适合在各种转换器工作条件下评估大量半导体器件。  另一种方法是根据测量的半导体输出特性和寄生电容推导出被
2023-02-21 16:01:16

关于半导体设备

想问一下,半导体设备需要用到温度传感器的有那些设备,比如探针台有没有用到,具体要求是那些,
2024-03-08 17:04:59

哪些因素会给半导体器件带来静电呢?

根据不同的诱因,常见的对半导体器件的静态损坏可分为人体,机器设备半导体器件这三种。 当静电与设备导线的主体接触时,设备由于放电而发生充电,设备接地,放电电流将立即流过电路,导致静电击穿。外部物体
2023-12-12 17:18:54

国产设备如何立足半导体市场

国产设备如何立足半导体市场      编者按:我国半导体产业的快速增长,国家对装备行业
2008-08-16 23:05:04

太赫兹量子级联激光器等THz源的工作原理及其研究进展

、天文学、环境科学等领域有重要的应用价值。THz振荡源则是THz频段应用的关键器件。研制可以产生连续波发射的固态半导体振荡源是THz技术研究中最前沿的问题之一。基于半导体的THz辐射源有体积小、易集成
2019-05-28 07:12:25

新兴的半导体技术发展趋势

文/编译杨硕王家农在网络无处不在、IP无处不在和无缝移动连接的总趋势下,国际半导体技术路线图(ITRS)项目组在他们的15年半导体技术发展预测中认为,随着技术和体系结构推进“摩尔定律”和生产力极限
2019-07-24 08:21:23

最新上线企业 职位推荐——【摩尔精英半导体招聘】

`摩尔精英半导体招聘 最新上线企业 职位推荐:钜泉光电科技(上海)股份有限公司资深数字验证工程师 15K-20K/上海/3年以上/硕士及以上/全职http://www.moore.ren/job
2016-05-17 12:57:13

有需要半导体设备的吗

苏州晶淼有限公司专业制作半导体设备、LED清洗腐蚀设备、硅片清洗、酸洗设备等王经理***/13771786452
2016-07-20 11:58:26

浅析化合物半导体技术

的应用提供了坚实的基础。目前,随着ALD(原子层淀积)技术的逐渐成熟,化合物半导体HMET结构以及MOSFET结构的器件质量以及可靠性得到了极大的提升,进一步提高了化合物半导体材料在高频高压应用领域
2019-06-13 04:20:24

美科学家建新设备将光束变固体 可用于研制量子计算

更进一步地分析和探究之外,还将有助于他们最终制造出量子计算机。  为了制造出最新设备,研究人员制造出了一个结构,由包含有1000亿个原子的超导材料组成,科学家们采用工程学方法,使这1000亿个原子的行为
2014-09-28 10:34:27

苏州华林科纳半导体设备

苏州华林科纳半导体设备技术有限公司成立于2008年3月,投资4500万元。主要从事半导体、太阳能、FPD领域湿制程设备的设计、研发、生产及销售;同时代理半导体、太阳能、FPD领域其它国外设备,负责
2015-04-02 17:26:21

详解:半导体的定义及分类

半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中
2016-11-27 22:34:51

超导量子芯片有哪些优势?

等方面的要求和实现路径上都存在一定差异。  两种主流实现方式  经典集成电路芯片通过一个个晶体管构建经典比特,二进制信息单元即经典比特,基于半导体制造工艺,采用硅、砷化镓、锗等半导体作为材料。  而量子
2020-12-02 14:13:13

通用量子计算机详解

通用量子计算机和容错量子计算――概念、现状和展望
2020-12-28 06:06:12

超冷原子在光晶格中量子输运的计算

超冷原子在光晶格中量子输运的计算:In this reference we present details of the calculation in our paper K. Henderson
2008-11-27 13:15:299

半导体技术知识: 原子中的电子状态 能级#半导体

半导体技术原子
学习电子发布于 2022-11-10 09:38:46

半导体技术知识: 原子的能级和晶体的能带#半导体

半导体技术原子
学习电子发布于 2022-11-10 09:39:31

半导体技术知识:一维单原子晶格振动的色散关系#半导体

半导体技术振动原子
学习电子发布于 2022-11-10 12:17:01

半导体技术知识:一维单原子晶格振动的运动方程#半导体

半导体技术振动原子
学习电子发布于 2022-11-10 12:17:25

半导体技术知识:一维双原子晶格振动的光学支#半导体

半导体技术振动原子
学习电子发布于 2022-11-10 12:17:50

半导体技术知识:晶格振动的量子化与声子#半导体

半导体技术量子振动
学习电子发布于 2022-11-10 12:31:33

半导体物理与器件:量子力学基础#半导体

半导体量子
学习电子发布于 2022-11-10 15:17:25

半导体物理与器件:量子力学的基本原理#半导体

半导体量子
学习电子发布于 2022-11-10 15:18:06

量子力学基础2#半导体

半导体量子
学习电子发布于 2022-11-10 15:35:58

半导体固态量子器件取得突破

将微缩到一系列物理极限,这一技术进步推动科研人员利用纳米技术寻求一个完全基于量子效应的信息处理方案。经过近二十年的发展,半导体量子点自旋比特固态器件以其可调控性和可扩展性成为最具应用潜力的固态量子计算方案之一
2018-06-10 01:45:001238

量子计算的竞争格局在2018年继续升温

2018年初,量子计算的竞争格局继续升温。但当下的量子计算格局就像是50年前的半导体芯片行业。
2018-01-15 14:23:314930

半导体量子芯片研究再现“黑科技”

由于固态系统环境复杂,量子比特的超快操控与长相干往往不可兼得。为了提高半导体量子芯片杂化量子比特的可控性,郭国平研究组将非对称思想运用到研究中,把原有的双量子点结构扩展成线性耦合三量子点系统。他们
2018-02-10 11:21:120

半导体量子芯片研制方面再获新进展,首次实现三量子比特逻辑门

开发与现代半导体工艺兼容的半导体全电控量子芯片,是当前量子计算机研制的重要方向之一。郭光灿团队中的郭国平教授研究组长期致力于半导体量子芯片研发,近年来曾先后实现半导体单电荷量子比特普适逻辑门、两电荷量子比特控制非逻辑门等成果。
2018-06-26 14:10:00654

首款国产量子计算机控制系统诞生 我国量子计算发展又向前走了一步

量子计算这一概念最早是物理学费曼于1981年引入,随着当前半导体的小型化遇到极限,当芯片的电路元件尺寸缩小到纳米尺度时,量子力学效应会终结当前的摩尔定律。所以这也是为什么像谷歌、IBM都在加大对量子计算的研究投入。
2018-12-25 15:16:401574

摩尔定律趋近极限 半导体设备发展局势分析

随着摩尔定律趋近极限半导体行业技术进步放缓,国内厂商与全球龙头技术差距正在逐渐缩短,我们认为未来 3-5 年将是半导体设备国产替代黄金战略机遇期。
2019-03-10 11:25:239416

刚刚!量子摩尔定律问世

在近日召开的2019年美国物理学会三月会议上,IBM正式提出量子摩尔定律,同时,IBM还公布了旗下最新的量子计算机IBM Q System One,这款量子计算机拥有“迄今为止最高的量子体积”。
2019-03-13 10:03:231462

挑战摩尔定律极限 可考虑不同半导体架构

4月登场的「超大型积体电路国际研讨会」(VLSI-TSA/DAT)是全球半导体产业年度盛事,首场专题演讲邀请到美国IBM华生研究中心研究员沙希迪(Ghavam Shahidi)以「功耗改善减缓,摩尔定律是否已走到尽头?」为题,谈半导体最新制程面临功率改善放缓的问题,并提出建议的解决之道。
2019-05-23 16:56:562397

量子计算机对比特币有没有影响

量子计算机是科学家对通用计算机(半导体计算机)计算能力极限进行探索的产物,也就是说其天生就被设计为超越现代计算机。
2019-11-15 10:23:046112

开拓摩尔定律新维度,提出智能摩尔之路

半导体技术发展到今天,半导体器件的沟道长度逼近到原子直径量级,我们看到了通过缩小三极管尺寸来推进的传统摩尔定律逐渐走向极限,在物理层面和信号层面受制约的情况下,我们提出了在信息处理层面进行拓展的“智能摩尔之路”。
2020-01-19 15:20:001769

如何利用新材料解决半导体器件中尺寸微缩和能耗等问题

院的王肖沐、施毅课题组同浙江大学的徐杨课题组以及北京计算科学研究中心合作,研制了一种在常温下实现能谷自旋流产生、传输、探测和调控等全信息处理功能的固态量子器件,成果近日发表在《自然纳米技术》杂志上。 现代半导体器件
2020-08-27 11:23:21764

“最安静”半导体量子比特问世

澳大利亚新南威尔士大学研究人员在最新一期《先进材料》杂志上撰文指出,他们研制出了迄今 最安静 噪音最低的半导体量子比特,为进一步研制出大规模纠错量子计算机奠定了基础。 为使量子计算机执行有用的计算
2020-10-15 09:54:511434

量子计算芯片与传统芯片有何不同

的要求和实现路径上都存在一定差异。 两种主流实现方式 经典集成电路芯片通过一个个晶体管构建经典比特,二进制信息单元即经典比特,基于半导体制造工艺,采用硅、砷化镓、锗等半导体作为材料。而量子芯片采用 2 个量子状态
2020-11-03 21:08:386488

量子计算如何突破摩尔定律?

近日,中科院量子信息重点实验室副主任、本源量子计算公司创始人兼首席科学家郭国平做客36氪主办的“超级观点”栏目,就量子计算的定义,量子计算与经典计算的关系,量子计算的实现路径与行业应用,国际视野下的量子计算竞争格局等热点话题,进行了深入分享。
2020-11-18 14:25:192426

照亮未来的离子阱量子计算

这一领域的发展。目前国际上实现量子计算的主流路径有多个,包括超导量子计算半导体量子计算、离子阱量子计算原子量子计算、核自旋量子计算和拓扑量子计算等等。 在这众多实现路径当中,离子阱量子计算以其长相干时间
2020-11-27 15:56:081898

独立量子存储器间的远距离纠缠获得突破

从激光、计算机、原子钟、核磁共振到保密通信,量子科技已广泛应用到人类的生活中。而且传统计算机的性能遭遇了瓶颈,在摩尔定律越加受限的情况,摩尔定律的未来之路或许就在量子计算电路上。量子计算将是芯片尺寸
2022-08-04 16:41:24317

二维半导体晶体管实际沟道长度的极限

高性能单层二硫化钼晶体管的实现让科研界看到了二维半导体的潜力,二维半导体材料的发展让我们看到了晶体管纵向尺寸下目前的缩放极限(< 1 nm),同样的科学家们也没有停止追寻二维半导体晶体管横向尺寸的极限(也就是晶体管沟道长度的缩放极限)。
2022-10-17 10:50:042020

硅基半导体自旋量子比特实现超快调控

速率超过1.2GHz的自旋量子比特超快操控,该速率是国际上半导体量子点体系中已报道的最高值,对提升自旋量子比特的品质具有重要的指导意义。研究成果日前在线发表在国际期刊《纳米通信》上。 硅基半导体自旋量子比特以其长量子退
2023-05-09 15:22:34370

本源量子与中国科大合作在硅基半导体量子比特调控上取得新进展

当前,量子计算发展进入飞速期,各国研究团队分别通过超导电路、离子阱、半导体、金刚石色心,或者光子等各种介质来构建量子比特体系,实现量子计算。在这些技术思路中,硅基自旋量子比特具有较长的量子退相干
2022-05-12 09:42:31274

量子云是什么?量子云平台如何构建?

现实中,能够构建出量子比特的物理系统有很多种,可以是基于光子、电子、原子、分子、原子核、晶格缺陷等;熟悉一点量子计算的读者可能听说过超导量子计算、离子阱量子计算半导体量子计算、光量子计算等,这些本质上就是基于不同物理体系而发展出的不同技术路线,进展状况也各不相同。
2023-06-27 11:33:513234

半导体量子计算芯片封装技术

量子计算的发展为信息科技界带来了革命性的前景,尤其是在解决那些对传统计算机来说不可攻克的问题上。然而,为了使量子计算机正常工作,所需的技术支持远非传统计算芯片所能比拟。其中最关键的一环是半导体量子计算芯片的封装技术。
2023-09-18 09:34:12814

什么是量子计算

什么是量子计算量子计算计算机科学领域中使用量子理论原理的一个分支。量子理论在原子和亚原子水平上解释了能量和物质的反应行为。量子计算使用亚原子粒子,如电子或光子。量子比特(Quantumbits
2023-09-19 10:04:381079

量子计算机芯片——半导体量子芯片载板

量子计算机走出实验室真正为人类社会服务量子芯片载板是量子芯片封装中不可或缺的一部分,量子芯片的载板就好比城市的‘地基’,它能够为半导体量子芯片提供基础支撑和信号连接,其上集成的电路和器件可有效提升
2023-12-08 15:51:30211

原子量子芯片如何制造的?

,常见的量子计算芯片中,无论是超导、离子阱,还是光子芯片,都是肉眼可见的。而原子量子集成电路,则需要通过扫描隧道显微镜等工具才能一探究竟。
2023-12-21 09:58:00300

原子阵列实现容错通用量子计算的前景和挑战

原子阵列量子计算由以下三个核心要素组成(图1):(1)利用原子内态编码量子比特。在使用碱金属原子的阵列实验中,量子比特编码在基态原子的两个磁量子数为零的内态能级上。
2024-01-22 11:29:07271

已全部加载完成