1.AI安防芯片,华为、富瀚微、中星微和那些国外巨头同台博弈
2.3D感测从消费电子扩散至行业应用
4.对话英伟达首席科学家:解码AI芯片战局
5.夏普传以100亿日圆收购东芝PC事业
集微网推出集成电路微信公共号:“天天IC”,重大新闻即时发布,天天IC、天天集微网,积微成著!扫描文末二维码添加关注。
1.夏普传以100亿日圆收购东芝PC事业
集微网消息,去年底就曾传出东芝(Toshiba)就业绩持续低迷的个人电脑和电视等业务表示,未来这两项产品把规划退出市场纳入营运重整的范围,彻底调查与评估各项业务获利性。
据日经新闻1月30日报导,夏普(Sharp)已和东芝(Toshiba)展开协商,有意收购东芝的PC事业、收购额预估为100亿日圆左右。据报导,夏普曾以“Mebius”品牌贩售笔电等PC产品,不过因不赚钱,故于2010年退出该市场,而夏普计划借此重返PC市场,且评估收购东芝PC事业是迅速开拓市场的良策。
鸿海帮美国HP、Dell代工生产PC产品,拥有能有效率生产PC的技术以及零件采购网络;另一方面,使用于PC、智能手机等用途的中小尺寸液晶面板是夏普的强项,因此若夏普重返PC市场、就能拥有液晶面板的新出海口。就整体策略来看,夏普收购东芝PC事业之后、是很有可能让其重返成长轨道。
不过东芝并未关闭夏普以外的协商大门,因此若夏普、东芝无法就条件面谈妥的话、双方的协商也有可能破局。东芝之前也曾和华硕就出售PC事业一事进行协商、不过协商未果。
目前,东芝PC事业年销售量约180万台、全球市占率仅在1%左右。
2.对话英伟达首席科学家:解码AI芯片战局
英伟达又涨了。
从2017年1月底以来,英伟达的股价又从108美元一路飙升至240多美元,翻了一倍有多。而英伟达股价一飞冲天的背后,正是人工智能技术不断兴盛崛起、发展壮大的缩影。
英伟达成功的原因有很多,及时布局CUDA、积极推进人工智能、不断完善打造软硬件生态等,这些一个个具体业务的背后,核心是对世界科技进展的战略性前瞻与决策;只有及时预判到了下一个技术热点,才能在所有人反应过来之前积极抢占先机,乃至最终引领行业。
这一切的背后,英伟达CEO黄仁勋自然是一个重要决策者;而除了他之外,另一个角色也扮演着至关重要的位置——英伟达首席科学家兼NVIDIA Research高级副总裁,Bill Dally博士。
(英伟达首席科学家兼NVIDIA Research高级副总裁,Bill Dally博士)
在EmTech China大会结束后,智东西与Bill Dally博士进行了一场一对一的深度专访,不仅详细解读了英伟达在云与端方面的战略布局,还聊到了目前火热的AI芯片话题——Dally博士认为,目前云端AI芯片巨头地位难以撼动,终端侧的AI芯片是各类初创公司的机会所在。此外,他还提到了英伟达的几个重点关注AI项目、以及中美两国科技力量的相似与差异性等。
除了担任英伟达首席科学家、负责把控公司整体技术战略发展外,Dally博士同时还是美国国家工程院院士、美国艺术与科学学院院士、IEEE和ACM的会员;在2009年就任英伟达之前,他还曾担任过MIT、斯坦福大学的教授。
在这众多光环萦绕之下,是一个睿智、幽默、思维极其敏捷、并且语速飞快的科学家——语速飞快是什么概念呢?当天速记的小姐姐拜托我千万要让Dally博士慢点说,因为实在记不住……
云端芯片格局难以撼动,端智能AI芯片成机会所在
最近半年以来,人工智能的发展重心逐渐从云端向终端转移,相伴而生的是人工智能芯片产业的全面崛起。智东西已历经数月对人工智能芯片全产业链上下近百间核心企业进行报道,范围不仅涵盖英伟达、谷歌、英特尔等科技巨头,还有众多如寒武纪、地平线、深鉴科技、Graphcore等国内外AI芯片初创。
按照应用场景,AI芯片可以简单地分为用于云端服务器机房等地的云AI芯片,以及用于端智能设备、IoT设备的端AI芯片。
Dally博士认为,现在云端AI芯片发展遇到的最大挑战在于,在提供高性能计算的同时,让芯片保持处理新兴AI模型和算法的灵活性,这些任务需要一个通用的可编程平台和专门的指令来完成。
而在端侧AI芯片发展的过程中,这种计算的灵活性并不那么重要,但终端侧所带来的效率、功耗等制约因素是更大的挑战。
在云方面,英伟达以Volta系列为首的GPU产品专为云服务机房打造,并且推出了cuDNN,TensorRT等软件服务完善AI生态;目前英伟达的GPU支持如TensorFlow、Caffe等所有主流的深度学习框架。
在端方面,英伟达则推出了16nm的AI芯片XAVIER、自动驾驶平台DRIVE PX,并且开源了DLA深度学习加速器项目,厂商可以免费下载这个专为IoT设备设计的AI架构,自己打造低功耗的AI芯片。
Dally博士说,人工智能的一个重要应用就是落地到各种终端设备上,比如汽车、电器、机器人、甚至是灯泡上,让它们变得智能起来。端智能的大势所趋自然毋庸置疑,但云智能也不会被取代,未来AI的发展趋势将会是云+端共生的系统。
而当谈论到如深鉴科技、Graphcore等这些国内外新兴AI芯片初创企业是否会与英伟达形成竞争关系时,Dally博士坦然表示,“是的,他们是竞争对手,但是竞争是健康的,英伟达正在努力保持其领先地位。”
不过他同时也提到,目前用于云端数据中心的芯片市场已经较为成熟,各类巨头纷纷有着扎实的积累,较难撼动格局。AI芯片初创公司(及AI初创公司)更适宜将重心放在终端应用上,尤其是未来的IoT设备,不仅种类繁多而且数量巨大,是初创企业的机会所在——当然,在这些领域里,如何收集到足够的可用数据成了初创企业所面临的最大挑战之一。因为大公司往往凭借着自身平台积累下大量数据,这些是初创公司所不具备的优势。
人工智能对于很多公司、很多行业都具备颠覆性的力量,大公司如果反应不够及时、又或是做错了某些决定,则很可能在这一波技术浪潮中落后、甚至失败。
三大重点关注AI项目:自动驾驶、新一代芯片、神经网络简化
作为首席科学家,Dally博士与英伟达公司中的众多项目都有不同程度的参与。当智东西询问到最近最关注的是哪几个项目时,Dally博士给出了几个答案:
1)自动驾驶平台
2)新一代深度学习加速器
3)神经网络的压缩与简化
关于自动驾驶,Dally博士用了一个巧妙的比喻——“自动驾驶其实就像一场游戏,但与AlphaGO这种一输一赢的游戏不同,在这个游戏里你要保证所有车都不能输,但与此同时你也要和别人竞争,谁最快到达终点。”
与此同时,机器还要像德扑游戏一样学会“察言观色”,准确地给对面的玩家(司机)分类,这个人究竟是激进的还是保守的?是刻薄的还是友好的?如果我超车的话他是会退让还是不让?等等。
至于新一代深度学习加速器项目,则包括了Dally博士及团队为人工智能算法处理所设计的一个新型架构,这一项目目前进展非常好,但是涉及新一代产品的发布,不方便透露更多。
神经网络的压缩与简化则是一个学术界与工程界都在研究讨论的重要问题。目前的深度神经网络普遍较大,无论是在云端还是在终端,都会影响网络速度,增大功耗。
在演讲与采访中Dally博士都提到了这一领域的两大研究方向:一个是降低计算精度(比如从32比特到8比特),另一个则是剪枝(Purne)先构造好整个算法网络,然后再尝试消除多余的节点,压缩网络大小。
此外,Dally博士还提到,英伟达的机器人团队前阵子开始了一个机器人协作工作室,在一个厨房大小的空间里,让机器人和人类协作,目标是最后成功地做出一顿饭来。
不过,目前机器要达到人类希望的标准还有很长的路要走。很多对人类来说很简单的动作——比如打开抽屉——对于机器来说有困难,因为他们往往缺乏常识判断,当面前有个水瓶时,它们不会像人类一样下意识地绕开这个瓶子。
除了自动驾驶、机器人、深度学习这类业务外,对于一些吸引人注意的新兴项目,Dally博士也会带领着一小队英伟达科学家组成“特工小组”来研究这个问题,比如前阵子他们就组了一个专攻量子计算的科学家小分队,一群科学家花了六个月时间读论文、解方程、拜访业内人士,力求全面了解这一领域。
研究得出的最后结论是量子计算离我们还有比较长的路要走,至少接下来10年内不会大规模应用,现在机器的量子比特太不稳定且噪声太大。智东西也在不久前的(量子计算机有多可怕 一秒破译全世界所有密码!)一文中介绍了目前世界范围内量子计算的发展脚步。
中美两国的AI芯片初创企业非常相似
正如上文提到,目前国内外的AI芯片领域正在逐渐升温,众多AI芯片初创企业开始陆续涌现——这些国内外不同企业的创始人们有很多都是Dally博士或是其好友的学生,与他都保持着良好的联系,这次来中国Dally博士也去了不少企业与学校演讲参观。
对于中美AI及AI芯片初创企业,Dally博士认为他们有着非常高的相似之处,一间硅谷创业公司与一间北京创业公司很可能在用着相似的方法在解决同一个问题。而这一情况在中美各个科技巨头上也是如此。
Dally博士说,他第一次来中国是2000年的时候,那时中美间的科技力量差异还是较大。但是随着这十几年的发展,在人工智能这些前沿科技上,中美之间的技术差异已经非常之小。
学术领域与工业领域研究的三大区别
此外,Dally博士除了身为英伟达首席科学家外,还身任美国国家工程院院士、美国艺术与科学学院院士、斯坦佛大学的教授等学术职位。在智东西问到学术研究与工业领域研究最大的区别有哪几点时,Dally博士给出了三个答案:研究领域、研究深度、以及资源。
在行业中,研究人员通常要将研究的领域限制在对公司有利的领域,而较少探究对公司“无用”的科技,比如宇宙起源。不过对于Dally博士来说,他感兴趣的研究领域正好与英伟达密切相关,这其实也是一开始Dally博士选中英伟达,而没有接受来自谷歌等其他科技巨头的offer的重要原因之一。
其次,在学术研究领域,很多学者研究一个东西的最终目的是发表论文,可论文即使发表了,这项技术也不一定能应用在实际,因为很多问题其实都没有得到解决。而在行业中,研究人员需要跟进和解决这些问题,使技术成熟到足以落地应用。
第三则是资源配置,在美国,至少30多年来,学术研究经费一直在不断下降;而科技公司们拥有更好的资源——人才、计算机、仪器等。
不过,AI人才招募是一个如今产业界都在头疼事情,英伟达也不例外。对于产业界来说,吸引这些AI人才的绝不仅仅的薪资待遇,有时更重要的是为他们提供一个良好的研究环境,并且保证软硬件研究资源的齐全,让他们能顺利地研究并解决问题。
结语:人工智能竞争进入白热化,2018拼市场
在人工智能领域,英伟达绝不仅仅是一个提供芯片的硬件玩家。在过去的十年间,以GPU为代表的硬件为深度学习提供了海量的计算能力,随后英伟达又通过cuDNN、TensorRT等一些列AI软件完善生态,进而推动了这一波人工智能热潮的全面兴起——无论是英伟达的股价还是市场声量都体现了这一点。
对于中国而言,人工智能更是缩短中西科技差异的罕有机会。除了国家积极推出响应政策外,各类市场、资本、初创、巨头也纷纷应声而起,占据各类AI应用赛道——这其中,AI芯片又扮演了一个人工智能“从软到硬”落地的重要环节。
随着2018年的开始,人工智能的竞争进入白热化阶段,各大公司已经从一开始的拼技术、拼履历、拼大牛,陆续进入到拼行业、拼落地的实干阶段了。初创公司们的第一批人工智能芯片也将在今年面世,人工智能将进入市场验证阶段,抢占市场成了2018年AI企业们的关键目标。
3.3D感测从消费电子扩散至行业应用
3D感测技术正由消费电子产品扩散至商业应用,预期后续将导入汽车领域带动自驾车与无人车发展,而3D感测器环节包含算法、激光、镜头以及模组,昨日光学镜头厂点火后今天由激光相关类股接棒走强。
业界表示,除了产业前景乐观之外,无人商店最近的走热也使得该领域获更多关注。3D感测供应商全新、稳懋及宏捷科等股价全面走强。
各机构与厂商均看好3D感测技术将成为划时代技术,通过快速生物脸部辨识有望达成便捷与安全性均获得满足,尽管iPhone X并为吸引消费者狂热,但导入3D感测以让业界激起涟漪,目前正跨界串联希望能将相关创新应用导入其他商用领域。
全新表明在3D感测所需的VCSEL不缺席,目前已有七至八个客户进行产品验证,且其中有具量产规模的客户,冲刺今年营运增添VCSEL新产品线。另外,光通讯产品去年落底后,预期今年业绩回升,第1季已有客户新标案开出,预期今年营运有望重拾成长轨道。
业界表示,全新今年营运动能端视VCSEL磊晶片出货状况,由于VCSEL磊晶片与原产品售价差达数倍,若有机会放量将成为全新今年主要动能。预估今年在LD产品可望出货及VCSEL产品开始贡献营收下,全年营收26.4亿元,EPS 3.26元,毛利率因高阶产品出货增长至36.5%。
目前3D感测应用仍以手机为大宗,电子标签的运用也正逐渐扩展。
4.三星芯片和智能手机业务强劲 奖励员工半年薪水
新浪科技讯 北京时间1月30日晚间消息,由于三星电子的芯片、智能手机和显示面板业务在2017年的表现十分强劲,公司已决定为这些部门的员工发放相当于半年薪水的绩效奖金。
报道称,三星电子已经通知公司高管和员工,将发放年度绩效奖金,以奖励在上一年为公司利润增长作出显著贡献的员工。根据三星电子的薪资体系,三星员工可在年初一次性获得“员工成功奖励”(OPI)。通常,三星会将每年纳税后所得运营利润的20%作为OPI发放给员工,每位员工的奖金额可高达其年薪的50%。
今年,得益于DRAM芯片、Galaxy S8智能手机和AMOLED屏幕在去年的强劲表现,这些部门的员工将获得相当于其年薪50%的奖励。去年,三星约60%的运营利润来自芯片业务部门。
去年,三星电子销售额达到了239万亿韩元(约合人民币14133亿元),同比增长19%。运营利润为53.6万亿韩元(约合人民币3170亿元),同比增长83.3%。
除了OPI奖金,三星电子芯片业务部门全体员工在去年11月还一次性获得了相当于月工资4倍的特殊奖金。这也是四年来三星电子首次为高管和员工发放特殊奖金。
此外,三星视讯显示部门(Visual Display)和消费电子部门员工分别获得了相当于年薪35%和28%的OPI奖金。这两个部门也完成了自己的年度目标,但并没有像芯片部门那样获得创纪录的利润。
5.AI安防芯片,华为、富瀚微、中星微和那些国外巨头同台博弈
图像和视频的人工智能处理,是目前AI芯片商业化前景最乐观的赛道,也是玩家们弯道超车的最佳机会。
视频监控在安防行业中占据了最大的市场份额——达到了49%,成为了构建安防系统的核心。芯片核心技术领域,看似波澜不惊,实则暗流涌动,一场革命即将到来。
这一场革命,即将迎来两家巨头的中国流博弈!
视频监控市场
我们先来看看,视频监控市场的分布情况,海康威视和大华股份占据了半壁江山。其他安防的企业进入淘汰洗牌期,从8500家锐减到了7000家。
目前安防行业依旧是一个以政府及大企业需求主导的市场。
AI芯片的温床与战场
2017年,一夜之间,AI遍地开花,人工智能时代呼之欲出。AI产业化,芯片先行。然而,在台积电的前十大客户里,比特币挖矿机ASIC芯片的订单就超过了嵌入AI芯片的海思麒麟芯片。春天还远,AI芯片还在路上,规模化还需要时间。
AI芯片,目前产业化最快的是图片和视频的大数据处理,用得最多的地方就是视频监控了。2016 年,我国视频监控市场规模已经达到 1000 亿元。AI 芯片起着至关重要的作用。
AI芯片的实现有两种方式,第一种称为前端方案,AI 芯片放置在每一台摄像机里,数据即时处理,然后再输出到后端服务器。第二种称为后端方案,AI 芯片放置在后端服务器里,将所有原始数据都汇总到这里,集中分析。
据 HIS 研究报告,2013 年-2018 年,IPC SoC 芯片的出货数量复合增长率高达 55.9%,这个可集成智能分析和实现网络传输的 SoC 芯片,才是值得全力以赴的战场!
资深玩家
这是蓝海吗?这个市场已经巨头云集,德州仪器、安霸、恩智浦、索尼、特威、三星等传统豪强林立,华为也已经强势进驻。另外,各类跨界AI芯片正快速向安防监控渗透。
英特尔为此从端到端,以及软硬件上都进行了大量的投入。除了收购NervanaSystems、Altera外,还收购了Movidius、Itseez等人工智能公司。英特尔在2017年3月份成立了人工智能事业部以后,又花了150亿美元大手笔收购了Mobileye,还成立了10亿美金支持的AI创新基金。
国内众多知名安防企业都正在使用NVIDIA的GPU,海康威视使用了NVIDIA的GPU以及JetsonTX1的平台 ,大华推出的“睿智”系列搭载的英伟达NVIDIA Tesla P4 GPUs,宇视科技云结构化智能分析服务器支持了80颗NVIDIAJetsonTX1处理器。
本土新贵
不得不说,华为确实很牛逼,在 2014 年的 IPC SoC 芯片市场上,仅仅用了一年时间就将国内市场份额从 37.3% 提升到了 64%,将德州仪器拉下了马。目前的网络摄像机(IPC)SoC芯片市场中,海思半导体可谓一家独大。
北京君正(自主研发NPU有望替代GPU,新一代高性能IPC芯片即将推出,民用市场拓展顺利);国科微(集成电路产业基金加持,成功在IPC芯片市场站稳脚跟)。中科曙光(与寒武纪联合发布AI服务器,有望应用到安防领域);景嘉微(拟引入大基金,国产GPU稀缺标的),以及跨界的地平线机器人,云天励飞,深思创芯等,更是虎视眈眈,汹涌澎湃。
此外,成立于1999年的中星微电子也是老牌安防芯片的提供商之一。2016年6月20日,中星微“数字多媒体芯片技术”国家重点实验室在京宣布,并且发布中国首款嵌入式神经网络处理器芯片(NPU)诞生。
这里要特别的提出一家公司,2017年登陆创业板资本市场的富瀚微,富瀚微本来是做模拟摄像机ISP芯片,2015 年,海康将它的 "视频智能分析技术秘密及人脸图像的检索系统及方法 "专利授权给了富瀚微,这是智能视频监控芯片的核心技术之一。这也让富瀚微顺利拿到为数不多的安防智能芯片“入场券”。
但是,富瀚微上市,只是在安防芯片市场起了一点微澜,很多人不知道它的战略价值!
巨头的角力
华为的存在应该最让海康威视寝食难安。近期,华为推出了支持H.265核心算法的4K高清摄像机,华为的安防产品线已默默从后台走向前端。而能让其自由游走在安防领域的最大底气就来自于芯片。海思芯片在安防市场占有近七成的份额,华为海思芯片还搭建了底层平台。
在安防监控行业迈入H.265编码标准下的超高清时代,堪称 HEVC(H.265)编码大佬级人物的华为,在未来安防监控市场中赢得了举足轻重的话语权。
众所周知,海康威视是华为海思安防SOC芯片的最大客户。与此同时,在高速发展的十几年中,海康威视曾多次提到公司没有进军芯片领域的计划。胡杨忠一直认为,研发芯片相当于一次创业,海康目前的所有精力应该放在芯片领域以外的业务上。随着华为的步步紧逼,作为深交所一哥的海康威视,与其等待海外芯片商降价,不如自己尝试研发,以握住安防行业发展咽喉。
但是,海康威视却向国家发改委申请了一个项目:海康威视——计算机视觉人工智能芯片研发及产业化项目。而且,海康威视在默默地“孵化”和“扶持”着富瀚微电子,坐等其壮大和发展;富瀚微电子在海康威视的战略层面上,有越来越重要的对冲棋子作用。
评论
查看更多