--- 产品详情 ---
Number of channels (#) | 1 |
Output type | Open-collector, Open-drain |
Propagation delay time (μs) | 0.2 |
Vs (Max) (V) | 36 |
Vs (Min) (V) | 5 |
Vos (offset voltage @ 25 C) (Max) (mV) | 3 |
Iq per channel (Typ) (mA) | 5.1 |
Input bias current (+/-) (Max) (nA) | 100 |
Rail-to-rail | No |
Rating | Military |
Operating temperature range (C) | -55 to 125 |
Features | Strobe, Vos Adj Pin |
VICR (Max) (V) | 34 |
VICR (Min) (V) | 0.5 |
- Operates From Single 5V Supply
- Input Current: 150 nA Max. Over Temperature
- Offset Current: 20 nA Max. Over Temperature
- Differential Input Voltage Range: ±30V
- Power Consumption: 135 mW at ±15V
All trademarks are the property of their respective owners.
The LM111-N, LM211-N and LM311-N are voltage comparators that have input currents nearly a thousand times lower than devices like the LM106 or LM710. They are also designed to operate over a wider range of supply voltages: from standard ±15V op amp supplies down to the single 5V supply used for IC logic. Their output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, they can drive lamps or relays, switching voltages up to 50V at currents as high as 50 mA.
Both the inputs and the outputs of the LM111-N, LM211-N or the LM311-N can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'ed. Although slower than the LM106 and LM710 (200 ns response time vs 40 ns) the devices are also much less prone to spurious oscillations. The LM111-N has the same pin configuration as the LM106 and LM710.
The LM211-N is identical to the LM111-N, except that its performance is specified over a ?25°C to +85°C temperature range instead of ?55°C to +125°C. The LM311-N has a temperature range of 0°C to +70°C.
为你推荐
-
TI数字多路复用器和编码器SN54HC1512022-12-23 15:12
-
TI数字多路复用器和编码器SN54LS1532022-12-23 15:12
-
TI数字多路复用器和编码器CD54HC1472022-12-23 15:12
-
TI数字多路复用器和编码器CY74FCT2257T2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS258A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74AHCT1582022-12-23 15:12
-
如何利用运算放大器设计振荡电路?2023-08-09 08:08
-
【PCB设计必备】31条布线技巧2023-08-03 08:09
-
电动汽车直流快充方案设计【含参考设计】2023-08-03 08:08
-
Buck电路的原理及器件选型指南2023-07-31 22:28
-
100W USB PD 3.0电源2023-07-31 22:27
-
千万不要忽略PCB设计中线宽线距的重要性2023-07-31 22:27
-
基于STM32的300W无刷直流电机驱动方案2023-07-06 10:02
-
上新啦!开发板仅需9.9元!2023-06-21 17:43
-
参考设计 | 2KW AC/DC数字电源方案2023-06-21 17:43
-
千万不能小瞧的PCB半孔板2023-06-21 17:34