--- 产品详情 ---
Number of channels (#) | 2 |
Total supply voltage (Max) (+5V=5, +/-5V=10) | 5 |
Total supply voltage (Min) (+5V=5, +/-5V=10) | 2.7 |
Vos (offset voltage @ 25 C) (Max) (mV) | 0.036 |
GBW (Typ) (MHz) | 3 |
Features | Zero Drift |
Slew rate (Typ) (V/us) | 4 |
Rail-to-rail | In to V-, Out |
Offset drift (Typ) (uV/C) | 0.015 |
Iq per channel (Typ) (mA) | 0.93 |
Vn at 1 kHz (Typ) (nV/rtHz) | 35 |
CMRR (Typ) (dB) | 130 |
Rating | Space |
Operating temperature range (C) | -55 to 125 |
Input bias current (Max) (pA) | 4 |
Output current (Typ) (mA) | 15 |
Architecture | CMOS |
- Total Ionizing Dose 50 krad(Si)
- ELDRS Free 50 krad(Si)
- TCVIO Temperature Sensitivity (Typical) 0.015 μV/°C
- Low Ensured VIO over Temperature 60 μV
- Low Noise with no 1/f 35nV/√Hz
- High CMRR 90 dB
- High PSRR 90 dB
- High AVOL 85 dB
- Wide Gain-Bandwidth Product 3MHz
- High Slew Rate 4V/μs
- Rail-to-Rail Output 30mV
- No External Capacitors Required
(For V S = 5V, Typical Unless Otherwise Noted)
All trademarks are the property of their respective owners.
The LMP2012 offers unprecedented accuracy and stability. This device utilizes patented techniques to measure and continually correct the input offset error voltage. The result is an amplifier which is ultra stable over time and temperature. It has excellent CMRR and PSRR ratings, and does not exhibit the familiar 1/f voltage and current noise increase that plagues traditional amplifiers. The combination of the LMP2012 characteristics makes it a good choice for transducer amplifiers, high gain configurations, ADC buffer amplifiers, DAC I-V conversion, and any other 2.7V-5V application requiring precision and long term stability.
Other useful benefits of the LMP2012 are rail-rail output, low supply current of 930 μA, and wide gain-bandwidth product of 3 MHz. These extremely versatile features found in the LMP2012 provide high performance and ease of use.
The QMLV version of the LMP2012 has been rated to tolerate a total dose level of 50krad/(Si) radiation by test method 1019 of MIL-STD-883.
为你推荐
-
TI数字多路复用器和编码器SN54HC1512022-12-23 15:12
-
TI数字多路复用器和编码器SN54LS1532022-12-23 15:12
-
TI数字多路复用器和编码器CD54HC1472022-12-23 15:12
-
TI数字多路复用器和编码器CY74FCT2257T2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS258A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74AHCT1582022-12-23 15:12
-
如何利用运算放大器设计振荡电路?2023-08-09 08:08
-
【PCB设计必备】31条布线技巧2023-08-03 08:09
-
电动汽车直流快充方案设计【含参考设计】2023-08-03 08:08
-
Buck电路的原理及器件选型指南2023-07-31 22:28
-
100W USB PD 3.0电源2023-07-31 22:27
-
千万不要忽略PCB设计中线宽线距的重要性2023-07-31 22:27
-
基于STM32的300W无刷直流电机驱动方案2023-07-06 10:02
-
上新啦!开发板仅需9.9元!2023-06-21 17:43
-
参考设计 | 2KW AC/DC数字电源方案2023-06-21 17:43
-
千万不能小瞧的PCB半孔板2023-06-21 17:34