--- 产品详情 ---
Function | Single-ended |
Output frequency (Max) (MHz) | 100 |
Number of outputs | 10 |
Output supply voltage (V) | 3.3 |
Core supply voltage (V) | 3.3 |
Output skew (ps) | 250 |
Features | I2C interface |
Operating temperature range (C) | 0 to 70 |
Rating | Catalog |
Output type | LVTTL |
Input type | LVTTL |
- High-Speed, Low-Skew 1-to-10 Clock Buffer for SDRAM (Synchronous DRAM) Clock Buffering Applications
- Output Skew, tsk(o), Less Than 250 ps
- Pulse Skew, tsk(p), Less Than 500 ps
- Supports up to Two Unbuffered SDRAM DIMMs (Dual Inline Memory Modules)
- I2C Serial Interface Provides Individual Enable Control for Each Output
- Operates at 3.3 V
- Distributed VCC and Ground Pins Reduce Switching Noise
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015
- Packaged in 28-Pin Shrink Small Outline (DB) Package
The CDC319 is a high-performance clock buffer that distributes one input (A) to 10 outputs (Y) with minimum skew for clock distribution. The CDC319 operates from a 3.3-V power supply, and is characterized for operation from 0°C to 70°C.
The device provides a standard mode (100K-bits/s) I2C serial interface for device control. The implementation is as a slave/receiver. The device address is specified in the I2C device address table. Both of the I2C inputs (SDATA and SCLOCK) provide integrated pullup resistors (typically 140 k) and are 5-V tolerant.
Three 8-bit I2C registers provide individual enable control for each of the outputs. All outputs default to enabled at powerup. Each output can be placed in a disabled mode with a low-level output when a low-level control bit is written to the control register. The registers are write only and must be accessed in sequential order (i.e., random access of the registers is not supported).
The CDC319 provides 3-state outputs for testing and debugging purposes. The outputs can be placed in a high-impedance state via the output-enable (OE) input. When OE is high, all outputs are in the operational state. When OE is low, the outputs are placed in a high-impedance state. OE provides an integrated pullup resistor.
为你推荐
-
TI数字多路复用器和编码器SN54HC1512022-12-23 15:12
-
TI数字多路复用器和编码器SN54LS1532022-12-23 15:12
-
TI数字多路复用器和编码器CD54HC1472022-12-23 15:12
-
TI数字多路复用器和编码器CY74FCT2257T2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS258A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74AHCT1582022-12-23 15:12
-
如何利用运算放大器设计振荡电路?2023-08-09 08:08
-
【PCB设计必备】31条布线技巧2023-08-03 08:09
-
电动汽车直流快充方案设计【含参考设计】2023-08-03 08:08
-
Buck电路的原理及器件选型指南2023-07-31 22:28
-
100W USB PD 3.0电源2023-07-31 22:27
-
千万不要忽略PCB设计中线宽线距的重要性2023-07-31 22:27
-
基于STM32的300W无刷直流电机驱动方案2023-07-06 10:02
-
上新啦!开发板仅需9.9元!2023-06-21 17:43
-
参考设计 | 2KW AC/DC数字电源方案2023-06-21 17:43
-
千万不能小瞧的PCB半孔板2023-06-21 17:34