--- 产品详情 ---
Sample rate (Max) (MSPS) | 1000, 2000 |
Resolution (Bits) | 10 |
Number of input channels | 2, 1 |
Interface type | Parallel LVDS |
Analog input BW (MHz) | 2800 |
Features | Ultra High Speed |
Rating | Space |
Input range (Vp-p) | 0.8 |
Power consumption (Typ) (mW) | 2770 |
Architecture | Folding Interpolating |
SNR (dB) | 56.8 |
ENOB (Bits) | 9 |
SFDR (dB) | 67.6 |
Operating temperature range (C) | -55 to 125, 25 to 25 |
Input buffer | Yes |
- Total Ionizing Dose 100 krad(Si)
- Single Event Latch-Up 120 Mev-cm2/mg
- Excellent Accuracy and Dynamic Performance
- Low Power Consumption
- R/W SPI Interface for Extended Control Mode
- Internally Terminated, Buffered, Differential Analog Inputs
- Ability to Interleave the 2 Channels to Operate 1 Channel at Twice the Conversion Rate
- Test Patterns at Output for System Debug
- Programmable 15-Bit Gain and 12-Bit Plus Sign Offset Adjustments
- Option of 1:2 Demuxed or 1:1 Non-demuxed LVDS Outputs
- Auto-sync Feature for Multi-chip Systems
- Single 1.9 ±0.1-V Power Supply
- 376 Ceramic Pin Grid Array Package (28.2 mm x 28.2 mm x 3.1 mm with 1.27 mm ball-pitch)
The ADC10D1000 is the latest advance in TI's Ultra-High-Speed ADC family of products. This low-power, high-performance CMOS analog-to-digital converter digitizes signals at 10-bit resolution at sampling rates of up to 1.0 GSPS in dual channel mode or 2.0 GSPS in single channel mode. The ADC10D1000 achieves excellent accuracy and dynamic performance while consuming a typical 2.9 W of power. This space grade, Radiation Tolerant part is rad hard to a single event latch up level of greater than 120MeV and a total dose (TID) of 100 krad(Si). The product is packaged in a hermatic 376 column thermally enhanced CPGA package rated over the temperature range of -55°C to +125°C.
The ADC10D1000 builds upon the features, architecture and functionality of the 8-bit GHz family of ADCs. New features include an auto-sync feature for multi-chip synchronization, independent programmable15-bit gain and 12-bit offset adjustment per channel, LC tank filter on the clock input, and the option of two's complement format for the digital output data. The unique folding and interpolating architecture, the fully differential comparator design, the innovative design of the internal track-and-hold amplifier and the self-calibration scheme enable a very flat response of all dynamic parameters beyond Nyquist, producing a high 8.9 Effective Number of Bits (ENOB) with a 498 MHz input signal and a 1.0 GHz sample rate while providing a 10?18 Code Error Rate (C.E.R.) Consuming a typical 2.9 W in Non-Demultiplex Mode at 1.0 GSPS from a single 1.9-V supply, this device is ensured to have no missing codes over the full operating temperature range.
Each channel has its own independent DDR Data Clock, DCLKI and DCLKQ, which are in phase when both channels are powered up, so that only one Data Clock could be used to capture all data, which is sent out at the same rate as the input sample clock. If the 1:2 Demultiplexed Mode is selected, a second 10-bit LVDS bus becomes active for each channel, such that the output data rate is sent out two times slower, but two times wider to relax data-capture timing margin. The two channels (I and Q) can also be interleaved (DES Mode) and used as a single 2.0 GSPS ADC to sample on the Q input. The output formatting is offset binary or two's complement and the Low Voltage Differential Signaling (LVDS) digital outputs are compatible with IEEE 1596.3-1996, with the exception of an adjustable common mode voltage between 0.8 V and 1.2 V.
为你推荐
-
TI数字多路复用器和编码器SN54HC1512022-12-23 15:12
-
TI数字多路复用器和编码器SN54LS1532022-12-23 15:12
-
TI数字多路复用器和编码器CD54HC1472022-12-23 15:12
-
TI数字多路复用器和编码器CY74FCT2257T2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS258A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74AHCT1582022-12-23 15:12
-
如何利用运算放大器设计振荡电路?2023-08-09 08:08
-
【PCB设计必备】31条布线技巧2023-08-03 08:09
-
电动汽车直流快充方案设计【含参考设计】2023-08-03 08:08
-
Buck电路的原理及器件选型指南2023-07-31 22:28
-
100W USB PD 3.0电源2023-07-31 22:27
-
千万不要忽略PCB设计中线宽线距的重要性2023-07-31 22:27
-
基于STM32的300W无刷直流电机驱动方案2023-07-06 10:02
-
上新啦!开发板仅需9.9元!2023-06-21 17:43
-
参考设计 | 2KW AC/DC数字电源方案2023-06-21 17:43
-
千万不能小瞧的PCB半孔板2023-06-21 17:34