--- 产品详情 ---
Resolution (Bits) | 8 |
Number of DAC channels (#) | 1 |
Interface type | I2C |
Output type | Buffered Voltage |
Settling time (μs) | 8 |
Features | Cost Optimized, Low Power |
Reference type | Ext |
Architecture | String |
Rating | Catalog |
Output range (Max) (mA/V) | 5.5 |
Output range (Min) (mA/V) | 0 |
Operating temperature range (C) | -40 to 105 |
- Micropower Operation: 125 μA @ 3 V
- Fast Update Rate: 188 KSPS
- Power-On Reset to Zero
- +2.7-V to +5.5-V Power Supply
- Specified Monotonic by Design
- I2C Interface up to 3.4 Mbps
- On-Chip Output Buffer Amplifier, Rail-to-Rail Operation
- Double-Buffered Input Register
- Address Support for up to Two DAC5571s
- Small 6 Lead SOT 23 Package
- Operation From -40°C to 105°C
- APPLICATIONS
- Process Control
- Data Acquistion Systems
- Closed-Loop Servo Control
- PC Peripherals
- Portable Instrumentation
I2C is a trademark of Philips Corporation.
The DAC5571 is a low-power, single-channel, 8-bit buffered voltage output DAC. Its on-chip precision output amplifier allows rail-to-rail output swing to be achieved. The DAC5571 utilizes an I2C-compatible, two-wire serial interface that operates at clock rates up to 3.4 Mbps with address support of up to two DAC5571s on the same data bus.
The output voltage range of the DAC is 0 V to VDD. The DAC5571 incorporates a power-on-reset circuit that ensures that the DAC output powers up at zero volts and remains there until a valid write to the device takes place. The DAC5571 contains a power-down feature, accessed via the internal control register, that reduces the current consumption of the device to 50 nA at 5 V.
The low-power consumption of this part in normal operation makes it ideally suited for portable battery operated equipment. The power consumption is less than 0.7 mW at VDD = 5 V reducing to 1 μW in power-down mode.
DAC7571/6571/5571 are 12/10/8-bit, single-channel I2C DACs from the same family. DAC7574/6574/5574 and DAC7573/6573/5573 are 12/10/8-bit quad-channel I2C DACs. Also see DAC8571/8574 for single/quad-channel, 16-bit I2C DACs.
为你推荐
-
TI数字多路复用器和编码器SN54HC1512022-12-23 15:12
-
TI数字多路复用器和编码器SN54LS1532022-12-23 15:12
-
TI数字多路复用器和编码器CD54HC1472022-12-23 15:12
-
TI数字多路复用器和编码器CY74FCT2257T2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS258A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74AHCT1582022-12-23 15:12
-
如何利用运算放大器设计振荡电路?2023-08-09 08:08
-
【PCB设计必备】31条布线技巧2023-08-03 08:09
-
电动汽车直流快充方案设计【含参考设计】2023-08-03 08:08
-
Buck电路的原理及器件选型指南2023-07-31 22:28
-
100W USB PD 3.0电源2023-07-31 22:27
-
千万不要忽略PCB设计中线宽线距的重要性2023-07-31 22:27
-
基于STM32的300W无刷直流电机驱动方案2023-07-06 10:02
-
上新啦!开发板仅需9.9元!2023-06-21 17:43
-
参考设计 | 2KW AC/DC数字电源方案2023-06-21 17:43
-
千万不能小瞧的PCB半孔板2023-06-21 17:34