--- 产品详情 ---
Function | Counter |
Bits (#) | 4 |
Technology Family | HC |
Supply voltage (Min) (V) | 2 |
Supply voltage (Max) (V) | 6 |
Input type | Standard CMOS |
Output type | Push-Pull |
Features | Balanced outputs, High speed (tpd 10-50ns), Positive input clamp diode |
- Qualified for Automotive Applications
- Wide Operating Voltage Range of 2 V to 6 V
- Outputs Can Drive Up To 10 LSTTL Loads
- Low Power Consumption, 80-μA Max ICC
- Typical tpd = 20 ns
- ±4-mA Output Drive at 5 V
- Low Input Current of 1 μA Max
- Look-Ahead Circuitry Enhances Cascaded Counters
- Fully Synchronous in Count Modes
- Parallel Asynchronous Load for Modulo-N Count Lengths
- Asynchronous Clear
The SN74HC193 device is a 4-bit synchronous, reversible, up/down binary counter. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change simultaneously with each other when dictated by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters.
The outputs of the four flip-flops are triggered on a low-to-high-level transition of either count (clock) input (UP or DOWN). The direction of counting is determined by which count input is pulsed while the other count input is high.
All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load (LOAD) input and entering the desired data at the data inputs. The output changes to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers simply by modifying the count length with the preset inputs.
A clear (CLR) input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and LOAD inputs.
This counter was designed to be cascaded without the need for external circuitry. The borrow (BO) output produces a low-level pulse while the count is zero (all outputs low) and DOWN is low. Similarly, the carry (CO) output produces a low-level pulse while the count is maximum (9 or 15), and UP is low. The counter then can be cascaded easily by feeding BO and CO to DOWN and UP, respectively, of the succeeding counter.
为你推荐
-
TI数字多路复用器和编码器SN54HC1512022-12-23 15:12
-
TI数字多路复用器和编码器SN54LS1532022-12-23 15:12
-
TI数字多路复用器和编码器CD54HC1472022-12-23 15:12
-
TI数字多路复用器和编码器CY74FCT2257T2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS258A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74AHCT1582022-12-23 15:12
-
如何利用运算放大器设计振荡电路?2023-08-09 08:08
-
【PCB设计必备】31条布线技巧2023-08-03 08:09
-
电动汽车直流快充方案设计【含参考设计】2023-08-03 08:08
-
Buck电路的原理及器件选型指南2023-07-31 22:28
-
100W USB PD 3.0电源2023-07-31 22:27
-
千万不要忽略PCB设计中线宽线距的重要性2023-07-31 22:27
-
基于STM32的300W无刷直流电机驱动方案2023-07-06 10:02
-
上新啦!开发板仅需9.9元!2023-06-21 17:43
-
参考设计 | 2KW AC/DC数字电源方案2023-06-21 17:43
-
千万不能小瞧的PCB半孔板2023-06-21 17:34