--- 产品详情 ---
Topology | Boost |
Control mode | CCM |
Practical operating frequency (Max) (MHz) | 0.2 |
UVLO thresholds on/off (V) | 16/10 |
Device type | Controllers |
Features | Average Current Mode, Continuous Control Mode , Enable |
Rating | Catalog |
Operating temperature range (C) | -40 to 85 |
- Control Boost PWM to 0.99 Power Factor
- Limit Line-Current Distortion to < 5%
- World-Wide Operation Without Switches
- Feedforward Line Regulation
- Average Current-Mode Control
- Low Noise Sensitivity
- Low Startup Supply Current
- Fixed-Frequency PWM Drive
- Low-Offset Analog Multiplier and Divider
- 1-A Totem-Pole Gate Driver
- Precision Voltage Reference
The UC1854 provides active-power factor correction for power systems that otherwise would draw non-sinusoidal current from sinusoidal power lines. This device implements all the control functions necessary to build a power supply capable of optimally using available power-line current while minimizing line-current distortion. To do this, the UC1854 contains a voltage amplifier, an analog multiplier and divider, a current amplifier, and a fixed-frequency PWM.
In addition, the UC1854 contains a power MOSFET-compatible gate driver, 7.5-V reference, line anticipator, load-enable comparator, low-supply detector, and overcurrent comparator.
The UC1854 uses average current-mode control to accomplish fixed-frequency current control with stability and low distortion. Unlike peak current-mode, average current control accurately maintains sinusoidal line current without slope compensation and with minimal response to noise transients.
The high reference voltage and high oscillator amplitude of the UC1854 minimize noise sensitivity while fast PWM elements permit chopping frequencies above 200 kHz. The UC1854 is used in single-phase and three-phase systems with line voltages that vary from 75 V to 275 V and line frequencies across the 50-Hz to 400-Hz range. To reduce the burden on the circuitry that supplies power to this device, the UC1854 features low starting supply current.
These devices are available packaged in 16-pin plastic and ceramic dual in-line packages, and a variety of surface-mount packages.
为你推荐
-
TI数字多路复用器和编码器SN54HC1512022-12-23 15:12
-
TI数字多路复用器和编码器SN54LS1532022-12-23 15:12
-
TI数字多路复用器和编码器CD54HC1472022-12-23 15:12
-
TI数字多路复用器和编码器CY74FCT2257T2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS258A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74AHCT1582022-12-23 15:12
-
如何利用运算放大器设计振荡电路?2023-08-09 08:08
-
【PCB设计必备】31条布线技巧2023-08-03 08:09
-
电动汽车直流快充方案设计【含参考设计】2023-08-03 08:08
-
Buck电路的原理及器件选型指南2023-07-31 22:28
-
100W USB PD 3.0电源2023-07-31 22:27
-
千万不要忽略PCB设计中线宽线距的重要性2023-07-31 22:27
-
基于STM32的300W无刷直流电机驱动方案2023-07-06 10:02
-
上新啦!开发板仅需9.9元!2023-06-21 17:43
-
参考设计 | 2KW AC/DC数字电源方案2023-06-21 17:43
-
千万不能小瞧的PCB半孔板2023-06-21 17:34