--- 产品详情 ---
Number of series cells | 1, 2, 3, 4 |
Charge current (Max) (A) | 16.2 |
Operating Vin (Max) (V) | 26 |
Cell chemistry | Lead Acid, Li-Ion/Li-Polymer, Lithium Phosphate/LiFePO4, NiCd, NiMH, SuperCap |
Battery charge voltage (Min) (V) | 1.024 |
Battery charge voltage (Max) (V) | 19.2 |
Absolute Vin (safety rating) (Max) ((V)) | 32 |
Control interface | SMBus |
Features | BAT temp thermistor monitoring (JEITA profile), BAT temp thermistor monitoring (hot/cold profile), IC thermal regulation, ICO (Input Current Optimization), IINDPM (Input current limit), Input OVP, Integrated ADC, Power Path, USB C/PD compatible, USB OTG integrated |
Operating Vin (Min) (V) | 3.5 |
Rating | Catalog |
- Pin-to-pin compatible to BQ25710
- Buck-boost narrow voltage DC (NVDC) charger for USB-C Power Delivery (PD) interface platform
- 3.5-V to 26-V input range to charge 1- to 4-cell battery
- Charge current up to 16.2 A/8.1 A with 128-mA/64-mA resolution based on 5-mΩ/10-mΩ sensing resistor
- Input current limit up to 10 A/6.35 A with 100-mA/50-mA resolution based on 5-mΩ/10-mΩ sensing resistor
- Support USB 2.0, USB 3.0, USB 3.1 and USB Power Delivery (PD)
- Input Current Optimizer (ICO) to extract max input power without overloading the adapter
- Integrated Fast Role Swap (FRS) feature following USB-PD specification
- Seamless transition between buck, buck-boost, and boost operations
- Input current and voltage regulation (IINDPM and VINDPM) against source overload
- TI patented switching frequency dithering pattern for EMI noise reduction
- TI patented Pass Through Mode (PTM) for system power efficiency improvement and battery fast charging achieving 99% efficiency.
- IMVP8/IMVP9 compliant system features for Intel platform
- Enhanced Vmin Active Protection (VAP) mode supplements battery from input capacitors during system peak power spike following latest Intel specification
- Comprehensive PROCHOT profile
- Two level discharge current limit PROCHOT profile to avoid battery wire-out
- System power monitor
- Input and battery current monitor through dedicated pins
- Integrated 8-bit ADC to monitor voltage, current and power
- Battery MOSFET ideal diode operation in supplement mode to support system when adapter is fully loaded
- Power up USB port from battery (USB OTG)
- 3-V to 24-V OTG with 8-mV resolution
- Output current limit up to 12.7 A/6.35 A with 100-mA/50-mA resolution based on 5-mΩ/10-mΩ sensing resistor
- 800-kHz/1.2-MHz programmable switching frequency with 2.2-μH/1.0-μH inductor
- SMBus host control interface for flexible system configuration
- High accuracy for the regulation and monitor
- ±0.5% Charge voltage regulation
- ±3% Charge current regulation
- ±2.5% Input current regulation
- ±2% Input/charge current monitor
- Safety
- Thermal shutdown
- Input, system, battery overvoltage protection
- Input, MOSFET, inductor overcurrent protection
- Package: 32-Pin 4.0 mm × 4.0 mm WQFN
The BQ25720 is a synchronous NVDC buck-boost battery charge controller to charge a 1- to 4-cell battery from a wide range of input sources including USB adapter, high voltage USB-C Power Delivery (PD) sources, and traditional adapters.
The NVDC configuration allows the system to be regulated based on battery voltage, but not drop below system minimum voltage. The system keeps operating even when the battery is completely discharged or removed. When load power exceeds input source rating, the battery goes into supplement mode and prevents the system from crashing.
During power up, the charger sets the converter to a buck, boost, or buck-boost configuration based on the input source and battery conditions. The charger seamlessly transitions between the buck, boost, and buck-boost operation modes without host control.
In the absence of an input source, the BQ25720 supports the USB On-the-Go (OTG) function from a 1- to 4-cell battery to generate an adjustable 3-V to 24-V output on VBUS with 8-mV resolution. The OTG output voltage transition slew rate can be configured to comply with the USB-PD 3.0 PPS specification.
When only a battery powers the system and no external load is connected to the USB OTG port, the BQ25720 implements the latest Intel Vmin Active Protection (VAP) feature, in which the device charges up the VBUS voltage from the battery to store some energy in the input decoupling capacitors. During a system peak power spike, the energy stored in the input capacitors supplements the system, to prevent the system voltage from dropping below the minimum system voltage and causing a system crash.
The BQ25720 monitors adapter current, battery current, and system power. The flexibly programmed PROCHOT output goes directly to the CPU for throttle back when needed.
The latest version of the USB-C PD specification includes Fast Role Swap (FRS) to ensure power role swapping occurs in a timely fashion so that the device(s) connected to the dock can avoid experiencing momentary power loss or glitching. This device integrates FRS in compliance with the PD specification.
TI patented switching frequency dithering pattern can significantly reduce EMI noise over the whole conductive EMI frequency range (150 kHz to 30 MHz). Multiple dithering scale options are available to provide flexibility for different applications to simplify EMI noise filter design.
The charger can be operated in the TI patented Pass Through Mode (PTM) to improve efficiency over the full load range. In PTM, input power is directly passed through the charger to the system. Switching losses of the MOSFETs and inductor core loss can be saved for high efficiency operation.
The BQ25720 is available in a 32-pin 4 mm × 4 mm WQFN package.
为你推荐
-
TI数字多路复用器和编码器SN54HC1512022-12-23 15:12
-
TI数字多路复用器和编码器SN54LS1532022-12-23 15:12
-
TI数字多路复用器和编码器CD54HC1472022-12-23 15:12
-
TI数字多路复用器和编码器CY74FCT2257T2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS258A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74AHCT1582022-12-23 15:12
-
如何利用运算放大器设计振荡电路?2023-08-09 08:08
-
【PCB设计必备】31条布线技巧2023-08-03 08:09
-
电动汽车直流快充方案设计【含参考设计】2023-08-03 08:08
-
Buck电路的原理及器件选型指南2023-07-31 22:28
-
100W USB PD 3.0电源2023-07-31 22:27
-
千万不要忽略PCB设计中线宽线距的重要性2023-07-31 22:27
-
基于STM32的300W无刷直流电机驱动方案2023-07-06 10:02
-
上新啦!开发板仅需9.9元!2023-06-21 17:43
-
参考设计 | 2KW AC/DC数字电源方案2023-06-21 17:43
-
千万不能小瞧的PCB半孔板2023-06-21 17:34