--- 产品详情 ---
Display type | LCD unipolar |
IC integration | VCOM |
Vin (Min) (V) | 4.5 |
Vin (Max) (V) | 18 |
Source driver voltage (Min) (V) | 4.5 |
Source driver voltage (Max) (V) | 18 |
Level shifter/scan driver (ch) | 0 |
Features | Gamma buffer, I2C interface, VCOM or op amp |
Rating | Catalog |
- I2C Compatible Programmable DAC to Set the Output Current
- Ensured Monotonic DAC
- Non-Volatile Memory to Hold the Setting
- EEPROM in System Programmable
- No External Programming Voltage Required
- Maximum Interface Bus Speed is 400 kHz
- SON-10 Package
All trademarks are the property of their respective owners.
The LM8342 is an integrated combination of a non-volatile register (7 bits EEPROM) and a DAC controlled current source. Using the LM8342, the VCOM calibration procedure is simplified by elimination of the potentiometer adjustment task. This adjustment task is currently performed at the factory using a trimmer adjustment tool and visual inspection.
The VCOM adjustment can be done electronically in production, using the I2C compatible interface. The factory operator can physically view the screen head-on (frontal viewing) when performing this step, easing manufacturing especially for large TFT panels.
The VCOM level is typically at half AVDD (determined by R1 and R2) and is buffered by the actual VCOM driver. By controlling the level of IOUT, the VCOM level can be tuned. The current level at the output of the LM8342 is a fraction (1/128 to 128/128) of a maximum current which is set by RSET and an analog reference (AVDD). The actual fraction is determined by the 7-bit DAC. As a result, the output current of the LM8342 has a good temperature stability yielding a very stable VCOM adjustment. Controlling the DAC setting of the LM8342 is done via its I2C compatible interface. The actual DAC setting is stored in a volatile register. Using a “Write to EE” command the data can be stored permanently in the embedded EEPROM. At power on of the device, the EEPROM data is copied to the volatile register, setting the DAC. At any time, the data in the EEPROM can be changed again via the I2C compatible interface.
为你推荐
-
TI数字多路复用器和编码器SN54HC1512022-12-23 15:12
-
TI数字多路复用器和编码器SN54LS1532022-12-23 15:12
-
TI数字多路复用器和编码器CD54HC1472022-12-23 15:12
-
TI数字多路复用器和编码器CY74FCT2257T2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS258A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74AHCT1582022-12-23 15:12
-
如何利用运算放大器设计振荡电路?2023-08-09 08:08
-
【PCB设计必备】31条布线技巧2023-08-03 08:09
-
电动汽车直流快充方案设计【含参考设计】2023-08-03 08:08
-
Buck电路的原理及器件选型指南2023-07-31 22:28
-
100W USB PD 3.0电源2023-07-31 22:27
-
千万不要忽略PCB设计中线宽线距的重要性2023-07-31 22:27
-
基于STM32的300W无刷直流电机驱动方案2023-07-06 10:02
-
上新啦!开发板仅需9.9元!2023-06-21 17:43
-
参考设计 | 2KW AC/DC数字电源方案2023-06-21 17:43
-
千万不能小瞧的PCB半孔板2023-06-21 17:34