--- 产品详情 ---
Local sensor accuracy (Max) (+/- C) | 2 |
Type | Local |
Operating temperature range (C) | -55 to 125 |
Supply voltage (Min) (V) | 2.7 |
Interface type | I2C, SMBus |
Supply voltage (Max) (V) | 5.5 |
Supply current (Max) (uA) | 500 |
Temp resolution (Max) (bits) | 9 |
Features | ALERT, UL recognized |
Remote channels (#) | 0 |
Addresses | 8 |
Rating | Catalog |
- No External Components Required
- Shutdown Mode to Minimize Power Consumption
- Up to Eight LM75As can be Connected to a Single Bus
- Power up Defaults Permit Stand-Alone Operation as Thermostat
- Key Specifications:
- Supply Voltage
- LM75A: 2.7 V to 5.5 V
- Supply Current
- Operating: 280 μA (Typical)
- Shutdown: 4 μA (Typical)
- Temperature Accuracy
- 25°C to 100°C: ±2°C (Max)
- 55°C to 125°C: ±3°C (Max)
- Supply Voltage
The LM75A is an industry-standard digital temperature sensor with an integrated sigma-delta analog-to-digital converter (ADC) and I2C interface. The LM75A provides 9-bit digital temperature readings with an accuracy of ±2°C from ?25°C to 100°C and ±3°C over ?55°C to 125°C.
The LM75A operates with a single supply from 2.7 V to 5.5 V. Communication is accomplished over a 2-wire interface which operates up to 400 kHz. The LM75A has three address pins, allowing up to eight LM75A devices to operate on the same 2-wire bus. The LM75A has a dedicated overtemperature output (O.S.) with programmable limit and hysteresis. This output has programmable fault tolerance, which lets the user to define the number of consecutive error conditions that must occur before O.S. is activated. The wide temperature and supply range and I2C interface make the LM75A ideal for a number of applications including base stations, electronic test equipment, office electronics, personal computers, and any other system in which thermal management is critical to performance. The LM75A is available in an SOIC-8 package and an VSSOP-8 package.
为你推荐
-
TI数字多路复用器和编码器SN54HC1512022-12-23 15:12
-
TI数字多路复用器和编码器SN54LS1532022-12-23 15:12
-
TI数字多路复用器和编码器CD54HC1472022-12-23 15:12
-
TI数字多路复用器和编码器CY74FCT2257T2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74LVC157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS258A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS257A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74ALS157A2022-12-23 15:12
-
TI数字多路复用器和编码器SN74AHCT1582022-12-23 15:12
-
如何利用运算放大器设计振荡电路?2023-08-09 08:08
-
【PCB设计必备】31条布线技巧2023-08-03 08:09
-
电动汽车直流快充方案设计【含参考设计】2023-08-03 08:08
-
Buck电路的原理及器件选型指南2023-07-31 22:28
-
100W USB PD 3.0电源2023-07-31 22:27
-
千万不要忽略PCB设计中线宽线距的重要性2023-07-31 22:27
-
基于STM32的300W无刷直流电机驱动方案2023-07-06 10:02
-
上新啦!开发板仅需9.9元!2023-06-21 17:43
-
参考设计 | 2KW AC/DC数字电源方案2023-06-21 17:43
-
千万不能小瞧的PCB半孔板2023-06-21 17:34