聚丰项目 > 基于AB32VG1的室内环境温湿度检测
本设计基于中科蓝讯的AB32VG1开发板, 通过DHT22检测室内环境,当温度或湿度高于设定值或低于设定值,就会发出警报,通过屏幕显示出当前室内的温度值。
jf_54891073
分享jf_54891073
团队成员
张林菲 无
AB32VG1主频 120M ,片上集成 RAM 192K, Flash 4Mbit,ADC,PWM,USB,UART,IIC 等资源。提供SDK,驱动齐全,支持RT-Thread Studio 开发应用,图形化配置系统,一键开启外设,一键使用软件包,强大的自动代码编辑辅助。
DHT22数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器,它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高的可靠性和卓越的长期稳定性。DHT11是一款温湿度传感器。 其测量精度为:湿度+-5%RH, 温度+-2℃,量程为:湿度20-90%RH, 温度0~50℃,采样周期大于等于1秒/次。传感器包括一个电阻式感湿元件和一个NTC测温元件,并连接一个高性能8位单片机相。DHT11的优点有:品质高、响应快、抗干扰能力强、性价比极高、体积小、功耗低等。
#include <board.h>
#include "dhtxx.h"
#define DBG_TAG "sensor.asair.dhtxx"
#ifdef PKG_USING_DHTXX_DEBUG
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_ERROR
#endif
#include <rtdbg.h>
/* timing */
#define DHT1x_BEGIN_TIME 20 /* ms */
#define DHT2x_BEGIN_TIME 1 /* ms */
#define DHTxx_PULL_TIME 30 /* us */
#define DHTxx_REPLY_TIME 100 /* us */
#define MEASURE_TIME 40 /* us */
/**
* This function will split a number into two part according to times.
*
* @param num the number will be split
* @param integer the integer part
* @param decimal the decimal part
* @param times how many times of the real number (you should use 10 in this case)
*
* @return 0 if num is positive, 1 if num is negative
*/
int split_int(const int num, int *integer, int *decimal, const rt_uint32_t times)
{
int flag = 0;
if (num < 0) flag = 1;
int anum = num<0 ? -num : num;
*integer = anum / times;
*decimal = anum % times;
return flag;
}
/**
* This function will convert temperature in degree Celsius to Kelvin.
*
* @param c the temperature indicated by degree Celsius
*
* @return the result
*/
float convert_c2k(float c)
{
return c + 273.15;
}
/**
* This function will convert temperature in degree Celsius to Fahrenheit.
*
* @param c the temperature indicated by degree Celsius
*
* @return the result
*/
float convert_c2f(float c)
{
return c * 1.8 + 32;
}
/**
* This function will convert temperature in degree Fahrenheit to Celsius.
*
* @param f the temperature indicated by degree Fahrenheit
*
* @return the result
*/
float convert_f2c(float f)
{
return (f - 32) * 0.55555;
}
/**
* This function will read a bit from sensor.
*
* @param pin the pin of Dout
*
* @return the bit value
*/
static uint8_t dht_read_bit(const rt_base_t pin)
{
uint8_t retry = 0;
while(rt_pin_read(pin) && retry < DHTxx_REPLY_TIME)
{
retry++;
rt_hw_us_delay(1);
}
retry = 0;
while(!rt_pin_read(pin) && retry < DHTxx_REPLY_TIME)
{
retry++;
rt_hw_us_delay(1);
}
rt_hw_us_delay(MEASURE_TIME);
return rt_pin_read(pin);
}
/**
* This function will read a byte from sensor.
*
* @param pin the pin of Dout
*
* @return the byte
*/
static uint8_t dht_read_byte(const rt_base_t pin)
{
uint8_t i, byte = 0;
for(i=0; i<8; i++)
{
byte <<= 1;
byte |= dht_read_bit(pin);
}
return byte;
}
/**
* This function will read and update data array.
*
* @param dev the device to be operated
*
* @return RT_TRUE if read successfully, otherwise return RT_FALSE.
*/
rt_bool_t dht_read(dht_device_t dev)
{
RT_ASSERT(dev);
uint8_t i, retry = 0, sum = 0;
#ifdef PKG_USING_DHTXX_INTERRUPT_DISABLE
rt_base_t level;
#endif
/* Reset data buffer */
rt_memset(dev->data, 0, DHT_DATA_SIZE);
/* MCU request sampling */
rt_pin_mode(dev->pin, PIN_MODE_OUTPUT);
rt_pin_write(dev->pin, PIN_LOW);
if (dev->type == DHT11 || dev->type == DHT12) {
rt_thread_mdelay(DHT1x_BEGIN_TIME); /* Tbe */
} else {
rt_thread_mdelay(DHT2x_BEGIN_TIME);
}
#ifdef PKG_USING_DHTXX_INTERRUPT_DISABLE
level = rt_hw_interrupt_disable();
#endif
rt_pin_mode(dev->pin, PIN_MODE_INPUT_PULLUP);
rt_hw_us_delay(DHTxx_PULL_TIME); /* Tgo */
/* Waiting for sensor reply */
while (rt_pin_read(dev->pin) && retry < DHTxx_REPLY_TIME)
{
retry++;
rt_hw_us_delay(1); /* Trel */
}
if(retry >= DHTxx_REPLY_TIME) return RT_FALSE;
retry = 0;
while (!rt_pin_read(dev->pin) && retry < DHTxx_REPLY_TIME)
{
retry++;
rt_hw_us_delay(1); /* Treh */
};
if(retry >= DHTxx_REPLY_TIME) return RT_FALSE;
/* Read data */
for(i=0; i<DHT_DATA_SIZE; i++)
{
dev->data[i] = dht_read_byte(dev->pin);
}
#ifdef PKG_USING_DHTXX_INTERRUPT_DISABLE
rt_hw_interrupt_enable(level);
#endif
/* Checksum */
for(i=0; i<DHT_DATA_SIZE-1; i++)
{
sum += dev->data[i];
}
if(sum != dev->data[4]) return RT_FALSE;
return RT_TRUE;
}
/**
* This function will get the humidity from dhtxx sensor.
*
* @param dev the device to be operated
*
* @return the humidity value
*/
rt_int32_t dht_get_humidity(dht_device_t const dev)
{
RT_ASSERT(dev);
rt_int32_t humi = 0;
switch(dev->type)
{
case DHT11:
case DHT12:
humi = dev->data[0] * 10 + dev->data[1];
break;
case DHT21:
case DHT22:
humi = (dev->data[0] << 8) + dev->data[1];
break;
default:
break;
}
return humi;
}
/**
* This function will get the temperature from dhtxx sensor.
*
* @param dev the device to be operated
*
* @return the temperature value
*/
rt_int32_t dht_get_temperature(dht_device_t const dev)
{
RT_ASSERT(dev);
rt_int32_t temp = 0;
switch(dev->type)
{
case DHT11:
case DHT12:
temp = dev->data[2] * 10 + (dev->data[3] & 0x7f);
if(dev->data[3] & 0x80) {
temp = -temp;
}
break;
case DHT21:
case DHT22:
temp = ((dev->data[2] & 0x7f) << 8) + dev->data[3];
if(dev->data[2] & 0x80) {
temp = -temp;
}
break;
default:
break;
}
return temp;
}
/**
* This function will init dhtxx sensor device.
*
* @param dev the device to init
* @param pin the pin of Dout
*
* @return the device handler
*/
rt_err_t dht_init(struct dht_device *dev, const rt_base_t pin)
{
if(dev == NULL)
return -RT_ERROR;
dev->type = DHT_TYPE;
dev->pin = pin;
rt_memset(dev->data, 0, DHT_DATA_SIZE);
rt_pin_mode(dev->pin, PIN_MODE_INPUT_PULLUP);
return RT_EOK;
}
dht_device_t dht_create(const rt_base_t pin)
{
dht_device_t dev;
dev = rt_calloc(1, sizeof(struct dht_device));
if (dev == RT_NULL)
{
LOG_E("Can't allocate memory for dhtxx device");
return RT_NULL;
}
dev->type = DHT_TYPE;
dev->pin = pin;
rt_memset(dev->data, 0, DHT_DATA_SIZE);
rt_pin_mode(dev->pin, PIN_MODE_INPUT_PULLUP);
return dev;
}
void dht_delete(dht_device_t dev)
{
if (dev)
rt_free(dev);
}
#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>
#include "dhtxx.h"
#define DATA_PIN PKG_USING_DHTXX_SAMPLE_PIN
/* cat_dhtxx sensor data by dynamic */
static void cat_dhtxx(void)
{
dht_device_t sensor = dht_create(DATA_PIN);
if(dht_read(sensor)) {
rt_int32_t temp = dht_get_temperature(sensor);
rt_int32_t humi = dht_get_humidity(sensor);
rt_kprintf("Temp: %d, Humi: %d\n", temp, humi);
}
else {
rt_kprintf("Read dht sensor failed.\n");
}
dht_delete(sensor);
}
#ifdef FINSH_USING_MSH
MSH_CMD_EXPORT(cat_dhtxx, read dhtxx humidity and temperature);
#endif
#ifndef __DHTXX_H__
#define __DHTXX_H__
#include <rtthread.h>
#include <rtdevice.h>
#include <sensor.h>
#define DHTLIB_VERSION "0.9.0"
#define DHT_DATA_SIZE 5
/* sensor model type */
#define DHT11 0
#define DHT12 1
#define DHT21 2
#define DHT22 3
#define AM2301 DHT21
#define AM2302 DHT22
#define AM2320 DHT22
#if defined(PKG_USING_DHTXX_TYPE_DHT11)
#define DHT_TYPE DHT11
#elif defined(PKG_USING_DHTXX_TYPE_DHT12)
#define DHT_TYPE DHT12
#elif defined(PKG_USING_DHTXX_TYPE_DHT21)
#define DHT_TYPE DHT21
#elif defined(PKG_USING_DHTXX_TYPE_DHT22)
#define DHT_TYPE DHT22
#endif
struct dht_device
{
rt_base_t pin;
rt_uint8_t type;
rt_uint8_t data[DHT_DATA_SIZE];
rt_mutex_t lock;
};
typedef struct dht_device *dht_device_t;
dht_device_t dht_create(const rt_base_t pin);
void dht_delete(dht_device_t dev);
rt_err_t dht_init(struct dht_device *dev, const rt_base_t pin);
rt_bool_t dht_read(dht_device_t dev);
rt_int32_t dht_get_humidity(dht_device_t dev);
rt_int32_t dht_get_temperature(dht_device_t dev);
float convert_c2k(float c);
float convert_c2f(float c);
float convert_f2c(float f);
rt_int32_t split_int(const rt_int32_t num, rt_int32_t *integer,
rt_int32_t *decimal, const rt_uint32_t times);
rt_err_t rt_hw_dht_init(const char *name, struct rt_sensor_config *cfg);
#endif /* __DHTXX_H__ */
#include "oled.h"
#include "oledfont.h"
u8 OLED_GRAM[144][8];
struct OLED_sss
{
uint8_t OLED_SCLK;
uint8_t OLED_SDIN;
uint8_t OLED_RST;
uint8_t OLED_DC;
uint8_t OLED_CS;
};
struct OLED_sss oled_ccc;
//反显函数
void OLED_ColorTurn(u8 i)
{
if(i==0)
{
OLED_WR_Byte(0xA6,OLED_CMD);//正常显示
}
if(i==1)
{
OLED_WR_Byte(0xA7,OLED_CMD);//反色显示
}
}
//屏幕旋转180度
void OLED_DisplayTurn(u8 i)
{
if(i==0)
{
OLED_WR_Byte(0xC8,OLED_CMD);//正常显示
OLED_WR_Byte(0xA1,OLED_CMD);
}
if(i==1)
{
OLED_WR_Byte(0xC0,OLED_CMD);//反转显示
OLED_WR_Byte(0xA0,OLED_CMD);
}
}
void OLED_WR_Byte(u8 dat,u8 cmd)
{
u8 i;
if(cmd)
OLED_DC_Set();
else
OLED_DC_Clr();
OLED_CS_Clr();
for(i=0;i<8;i++)
{
OLED_SCLK_Clr();
if(dat&0x80)
OLED_SDIN_Set();
else
OLED_SDIN_Clr();
OLED_SCLK_Set();
dat<<=1;
}
OLED_CS_Set();
OLED_DC_Set();
}
//开启OLED显示
void OLED_DisPlay_On(void)
{
OLED_WR_Byte(0x8D,OLED_CMD);//电荷泵使能
OLED_WR_Byte(0x14,OLED_CMD);//开启电荷泵
OLED_WR_Byte(0xAF,OLED_CMD);//点亮屏幕
}
//关闭OLED显示
void OLED_DisPlay_Off(void)
{
OLED_WR_Byte(0x8D,OLED_CMD);//电荷泵使能
OLED_WR_Byte(0x10,OLED_CMD);//关闭电荷泵
OLED_WR_Byte(0xAF,OLED_CMD);//关闭屏幕
}
//更新显存到OLED
void OLED_Refresh(void)
{
u8 i,n;
for(i=0;i<8;i++)
{
OLED_WR_Byte(0xb0+i,OLED_CMD); //设置行起始地址
OLED_WR_Byte(0x00,OLED_CMD); //设置低列起始地址
OLED_WR_Byte(0x10,OLED_CMD); //设置高列起始地址
for(n=0;n<128;n++)
OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA);
}
}
//清屏函数
void OLED_Clear(void)
{
u8 i,n;
for(i=0;i<8;i++)
{
for(n=0;n<128;n++)
{
OLED_GRAM[n][i]=0;//清除所有数据
}
}
OLED_Refresh();//更新显示
}
//画点
//x:0~127
//y:0~63
void OLED_DrawPoint(u8 x,u8 y)
{
u8 i,m,n;
i=y/8;
m=y%8;
n=1<<m;
OLED_GRAM[x][i]|=n;
}
//清除一个点
//x:0~127
//y:0~63
void OLED_ClearPoint(u8 x,u8 y)
{
u8 i,m,n;
i=y/8;
m=y%8;
n=1<<m;
OLED_GRAM[x][i]=~OLED_GRAM[x][i];
OLED_GRAM[x][i]|=n;
OLED_GRAM[x][i]=~OLED_GRAM[x][i];
}
//画线
//x:0~128
//y:0~64
void OLED_DrawLine(u8 x1,u8 y1,u8 x2,u8 y2)
{
u8 i,k,k1,k2,y0;
if((x1<0)||(x2>128)||(y1<0)||(y2>64)||(x1>x2)||(y1>y2))return;
if(x1==x2) //画竖线
{
for(i=0;i<(y2-y1);i++)
{
OLED_DrawPoint(x1,y1+i);
}
}
else if(y1==y2) //画横线
{
for(i=0;i<(x2-x1);i++)
{
OLED_DrawPoint(x1+i,y1);
}
}
else //画斜线
{
k1=y2-y1;
k2=x2-x1;
k=k1*10/k2;
for(i=0;i<(x2-x1);i++)
{
OLED_DrawPoint(x1+i,y1+i*k/10);
}
}
}
//x,y:圆心坐标
//r:圆的半径
void OLED_DrawCircle(u8 x,u8 y,u8 r)
{
int a, b,num;
a = 0;
b = r;
while(2 * b * b >= r * r)
{
OLED_DrawPoint(x + a, y - b);
OLED_DrawPoint(x - a, y - b);
OLED_DrawPoint(x - a, y + b);
OLED_DrawPoint(x + a, y + b);
OLED_DrawPoint(x + b, y + a);
OLED_DrawPoint(x + b, y - a);
OLED_DrawPoint(x - b, y - a);
OLED_DrawPoint(x - b, y + a);
a++;
num = (a * a + b * b) - r*r;//计算画的点离圆心的距离
if(num > 0)
{
b--;
a--;
}
}
}
//在指定位置显示一个字符,包括部分字符
//x:0~127
//y:0~63
//size:选择字体 12/16/24
//取模方式 逐列式
void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size1)
{
u8 i,m,temp,size2,chr1;
u8 y0=y;
size2=(size1/8+((size1%8)?1:0))*(size1/2); //得到字体一个字符对应点阵集所占的字节数
chr1=chr-' '; //计算偏移后的值
for(i=0;i<size2;i++)
{
if(size1==12)
{temp=asc2_1206[chr1][i];} //调用1206字体
else if(size1==16)
{temp=asc2_1608[chr1][i];} //调用1608字体
else if(size1==24)
{temp=asc2_2412[chr1][i];} //调用2412字体
else return;
for(m=0;m<8;m++) //写入数据
{
if(temp&0x80)OLED_DrawPoint(x,y);
else OLED_ClearPoint(x,y);
temp<<=1;
y++;
if((y-y0)==size1)
{
y=y0;
x++;
break;
}
}
}
}
//显示字符串
//x,y:起点坐标
//size1:字体大小
//*chr:字符串起始地址
void OLED_ShowString(u8 x,u8 y,u8 *chr,u8 size1)
{
while((*chr>=' ')&&(*chr<='~'))//判断是不是非法字符!
{
OLED_ShowChar(x,y,*chr,size1);
x+=size1/2;
if(x>128-size1) //换行
{
x=0;
y+=2;
}
chr++;
}
}
//m^n
u32 OLED_Pow(u8 m,u8 n)
{
u32 result=1;
while(n--)
{
result*=m;
}
return result;
}
////显示2个数字
////x,y :起点坐标
////len :数字的位数
////size:字体大小
void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size1)
{
u8 t,temp;
for(t=0;t<len;t++)
{
temp=(num/OLED_Pow(10,len-t-1))%10;
if(temp==0)
{
OLED_ShowChar(x+(size1/2)*t,y,'0',size1);
}
else
{
OLED_ShowChar(x+(size1/2)*t,y,temp+'0',size1);
}
}
}
//显示汉字
//x,y:起点坐标
//num:汉字对应的序号
//取模方式 列行式
void OLED_ShowChinese(u8 x,u8 y,u8 num,u8 size1)
{
u8 i,m,n=0,temp,chr1;
u8 x0=x,y0=y;
u8 size3=size1/8;
while(size3--)
{
chr1=num*size1/8+n;
n++;
for(i=0;i<size1;i++)
{
if(size1==16)
{temp=Hzk1[chr1][i];}//调用16*16字体
else if(size1==24)
{temp=Hzk2[chr1][i];}//调用24*24字体
else if(size1==32)
{temp=Hzk3[chr1][i];}//调用32*32字体
else if(size1==64)
{temp=Hzk4[chr1][i];}//调用64*64字体
else return;
for(m=0;m<8;m++)
{
if(temp&0x01)OLED_DrawPoint(x,y);
else OLED_ClearPoint(x,y);
temp>>=1;
y++;
}
x++;
if((x-x0)==size1)
{x=x0;y0=y0+8;}
y=y0;
}
}
}
//num 显示汉字的个数
//space 每一遍显示的间隔
void OLED_ScrollDisplay(u8 num,u8 space)
{
u8 i,n,t=0,m=0,r;
while(1)
{
if(m==0)
{
OLED_ShowChinese(128,24,t,16); //写入一个汉字保存在OLED_GRAM[][]数组中
t++;
}
if(t==num)
{
for(r=0;r<16*space;r++) //显示间隔
{
for(i=0;i<144;i++)
{
for(n=0;n<8;n++)
{
OLED_GRAM[i-1][n]=OLED_GRAM[i][n];
}
}
OLED_Refresh();
}
t=0;
}
m++;
if(m==16){m=0;}
for(i=0;i<144;i++) //实现左移
{
for(n=0;n<8;n++)
{
OLED_GRAM[i-1][n]=OLED_GRAM[i][n];
}
}
OLED_Refresh();
}
}
//配置写入数据的起始位置
void OLED_WR_BP(u8 x,u8 y)
{
OLED_WR_Byte(0xb0+y,OLED_CMD);//设置行起始地址
OLED_WR_Byte(((x&0xf0)>>4)|0x10,OLED_CMD);
OLED_WR_Byte((x&0x0f),OLED_CMD);
}
//x0,y0:起点坐标
//x1,y1:终点坐标
//BMP[]:要写入的图片数组
void OLED_ShowPicture(u8 x0,u8 y0,u8 x1,u8 y1,u8 BMP[])
{
u32 j=0;
u8 x=0,y=0;
if(y%8==0)y=0;
else y+=1;
for(y=y0;y<y1;y++)
{
OLED_WR_BP(x0,y);
for(x=x0;x<x1;x++)
{
OLED_WR_Byte(BMP[j],OLED_DATA);
j++;
}
}
}
//OLED的初始化
void OLED_Init(void)
{
oled_ccc.OLED_SCLK = rt_pin_get("PA.3");
oled_ccc.OLED_SDIN = rt_pin_get("PA.4");
oled_ccc.OLED_RST = rt_pin_get("PF.1");
oled_ccc.OLED_DC = rt_pin_get("PB.0");
oled_ccc.OLED_CS = rt_pin_get("PA.5");
rt_pin_mode(oled_ccc.OLED_SCLK, PIN_MODE_OUTPUT);
rt_pin_mode(oled_ccc.OLED_SDIN, PIN_MODE_OUTPUT);
rt_pin_mode(oled_ccc.OLED_RST, PIN_MODE_OUTPUT);
rt_pin_mode(oled_ccc.OLED_DC, PIN_MODE_OUTPUT);
rt_pin_mode(oled_ccc.OLED_CS, PIN_MODE_OUTPUT);
rt_pin_write(oled_ccc.OLED_SCLK, PIN_HIGH);
rt_pin_write(oled_ccc.OLED_SDIN, PIN_HIGH);
rt_pin_write(oled_ccc.OLED_RST, PIN_HIGH);
rt_pin_write(oled_ccc.OLED_DC, PIN_HIGH);
rt_pin_write(oled_ccc.OLED_CS, PIN_HIGH);
OLED_RST_Clr();//复位
rt_thread_mdelay(200);
OLED_RST_Set();
OLED_WR_Byte(0xAE,OLED_CMD);//--turn off oled panel
OLED_WR_Byte(0x00,OLED_CMD);//---set low column address
OLED_WR_Byte(0x10,OLED_CMD);//---set high column address
OLED_WR_Byte(0x40,OLED_CMD);//--set start line address Set Mapping RAM Display Start Line (0x00~0x3F)
OLED_WR_Byte(0x81,OLED_CMD);//--set contrast control register
OLED_WR_Byte(0xCF,OLED_CMD);// Set SEG Output Current Brightness
OLED_WR_Byte(0xA1,OLED_CMD);//--Set SEG/Column Mapping 0xa0左右反置 0xa1正常
OLED_WR_Byte(0xC8,OLED_CMD);//Set COM/Row Scan Direction 0xc0上下反置 0xc8正常
OLED_WR_Byte(0xA6,OLED_CMD);//--set normal display
OLED_WR_Byte(0xA8,OLED_CMD);//--set multiplex ratio(1 to 64)
OLED_WR_Byte(0x3f,OLED_CMD);//--1/64 duty
OLED_WR_Byte(0xD3,OLED_CMD);//-set display offset Shift Mapping RAM Counter (0x00~0x3F)
OLED_WR_Byte(0x00,OLED_CMD);//-not offset
OLED_WR_Byte(0xd5,OLED_CMD);//--set display clock divide ratio/oscillator frequency
OLED_WR_Byte(0x80,OLED_CMD);//--set divide ratio, Set Clock as 100 Frames/Sec
OLED_WR_Byte(0xD9,OLED_CMD);//--set pre-charge period
OLED_WR_Byte(0xF1,OLED_CMD);//Set Pre-Charge as 15 Clocks & Discharge as 1 Clock
OLED_WR_Byte(0xDA,OLED_CMD);//--set com pins hardware configuration
OLED_WR_Byte(0x12,OLED_CMD);
OLED_WR_Byte(0xDB,OLED_CMD);//--set vcomh
OLED_WR_Byte(0x40,OLED_CMD);//Set VCOM Deselect Level
OLED_WR_Byte(0x20,OLED_CMD);//-Set Page Addressing Mode (0x00/0x01/0x02)
OLED_WR_Byte(0x02,OLED_CMD);//
OLED_WR_Byte(0x8D,OLED_CMD);//--set Charge Pump enable/disable
OLED_WR_Byte(0x14,OLED_CMD);//--set(0x10) disable
OLED_WR_Byte(0xA4,OLED_CMD);// Disable Entire Display On (0xa4/0xa5)
OLED_WR_Byte(0xA6,OLED_CMD);// Disable Inverse Display On (0xa6/a7)
OLED_WR_Byte(0xAF,OLED_CMD);
OLED_Clear();
}
演示视频:
(15.37 MB)下载
jf_02684796: 好
回复