检测子系统 - 电动汽车电源设计挑战:高压锂离子电池组管理系统

2012年10月15日 15:06 来源:本站整理 作者:灰色天空 我要评论(0)

检测子系统

电池接口控制系统的核心是一个复杂的检测子系统——一个完整的嵌入式系统电路,负责监视每个锂离子电池组的输出电压和电池组的温度。电池电压经过电池连接器到达L9763,一块由意法微电子和LG Chem联合开发的ASIC。

L9763 ASIC可以监视多达10个独立的锂离子电池组,可以通过片上电流检测放大器进行电池-负载-电流的监视,并通过片上的模拟复用器和采样保持电路完成电池电压的监视(图4)。这个器件的差分输入可以在大偏移电压条件下确保毫伏精度的测量,具体取决于电池单元在电池组中的位置。另外,PCB设计师可以联合使用走线版图技术、隔离技术和前面提到的地平面,以确保这种极具挑战的环境中信号的完整性。
 

 
图4:L9763 ASIC包含有用于测量Volt电池组的电压和电流以及通过无源电阻电池平衡技术平衡这些电池中电量的片上电路。(意法微电子公司提供)

根据这些测量结果,L9763的片上电路会将个别电池组切换到外部电阻网络,以便有选择性地给电池放电,从而减小由于大的电压差异引起的应力。这种简单的无源技术为电池平衡提供了简单、低成本的解决方案,但损失了效率,因为能量变成了放电电阻上的热量而损失掉了(图5)。替代性的电池平衡技术是使用有源方法,将最高电压电池的电量存储起来,并重新分配给最低的电池。这种技术需要在每节电池之间顺序切换,并使用电容、电感或变压器来储存或重新分配电量。虽然有源方法与无源方法相比具有节省能量的优势,但增加了系统成本和复杂性。
 

 
图5:无源电池平衡技术(左)将高电压电池切换到放电电阻;有源电池平衡技术可以依次累积电量到电容上(右)或电感上,或者使用变压器将电量分配给低电压电池。(意法微电子提供)。

为了给多单元锂离子电池组充电或放电,设计一般使用恒流或恒压方法,此时充电系统将使用一对MOSFET在达到想要的充电电压时降低充电电流,或在放电操作中增加电流。L9763提供充电泵驱动功率MOSFET器件。L9763会将所监视的锂离子电池的测量数据通过SPI接口传送给飞思卡尔的S9S08DZ32 MCU。L9763还向MCU提供5V LDO输出。针对总的电池管理功能,各个L9763器件是通过片上接口链接的,并由主控制单元通过垂直菊花链通信进行单独寻址。

检测电路MCU

如上所述,锂离子电池的SOC估计是一项复杂的任务,需要足够强大的处理能力。在这个设计中,每个检测子系统都有一个L9763 ASIC和一个飞思卡尔的S9S08DZ32 40-MHz HCS08 MCU,该MCU集成有32kB闪存、2kB RAM和1kB E2PROM。外部4MHz振荡器为MCU时钟工作提供参考频率。

在通用汽车-LG Chem设计中,MCU需要执行根据L9763提供的电压和电流测量数据估计SOC所需的运算。虽然SOC算法是专有算法,但硬件配置和维护程序建议这些估计算法能将使用存储的电池表征数据进行的电压驱动估计与在充电过程中用于临时重新校准的更直接电量测量结合起来。由IBM描述的详细系统建模环境的使用提供了一个理想的平台,有助于为优化SOC计算找到合适的数据集,也有助于在广泛采样的工作条件下对方法进行验证确认。

HCS08的安全功能,比如计算机工作正常看门狗定时器,有助于确保可靠的工作,并在发生不可恢复的应用软件故障时自动产生复位信号。在这种应用中特别重要的是,S9S08DZ32内部有个复杂的片上CAN控制器,当不在使用时可以有选择性地断电或进入休眠模式(图6)。为了帮助确保可预测的实时性能,片上控制器集成了5个接收缓存并组成了一个FIFO缓冲器,还有3个发送缓存,允许区分输出消息的优先次序。
 

 
图6:片载CAN控制器是选用飞思卡尔S9S08DZ32 MCU搭建电池接口控制模块检测子系统的关键因素。(飞兆半导体提供)

上一页1234下一页

本文导航