模型的可解释性是机器学习领域的一个重要分支,随着 AI 应用范围的不断扩大,人们越来越不满足于模型的黑盒特性,与此同时,金融、自动驾驶等领域的法律法规也对模型的可解释性提出了更高的要求,在可解释
2023-09-28 10:17:15437 机器学习按照模型类型分为监督学习模型、无监督学习模型两大类。 1. 有监督学习 有监督学习通常是利用带有专家标注的标签的训练数据,学习一个从输入变量X到输入变量Y的函数映射
2023-09-05 11:45:061161 机器学习模型指标在机器学习建模过程中,针对不同的问题,需采用不同的模型评估指标。
2023-09-06 12:51:50410 在这篇文章中,我将逐步讲解如何使用 TensorFlow 创建一个简单的机器学习模型。
2024-01-08 09:25:34272 回答和分析这些问题时,就可以很好地揭示问题更深层次的内涵。基本上,这些问题可能有助于我们摆脱上面所说的那堆问题。我们并非只想一直对数据集进行操作,我们想更加深入地研究机器学习技术的特性、奇怪的地方以及
2018-09-29 09:39:54
分析一个不错的机器学习项目简历收集册
2021-09-26 06:03:10
机器学习模型的性能度量
2020-05-12 10:27:21
本书将机器学习看成一个整体,不管于基于频率的方法还是贝叶斯方法,不管是回归模型还是分类模型,都只是一个问题的不同侧面。作者能够开启上帝视角,将机器学习的林林总总都纳入一张巨网之中
2019-03-18 08:30:00
机器学习:偏差、方差,生成模型,判别模型,先验概率,后验概率
2020-05-14 15:23:39
各种机器学习的应用场景分别是什么?例如,k近邻,贝叶斯,决策树,svm,逻辑斯蒂回归和最大熵模型
2019-09-10 10:53:10
机器学习的未来在工业领域采用机器学习机器学习和大数据工业人工智能生态系统
2020-12-16 07:47:35
机器学习的未来在工业领域采用机器学习机器学习和大数据
2021-01-27 06:02:18
思想。理解在一个新的场景或数据集下,何时以及如何进行迁移学习。利用PyTorch加载数据、搭建模型、训练网络以及进行网络微调操作。给定迁移场景,利用daib库和生成对抗技术独立完成图像分类中的领域适配
2022-04-28 18:56:07
Edge Impulse是一个应用于嵌入式领域的在线的机器学习网站,不仅为用户提供了一些现成的神经网络模型以供训练,还能直接将训练好的模型转换成能在单片机MCU上运行的代码,使用方便,容易上手。本文
2021-12-20 06:51:26
、Scikit-Learn在机器学习和数据挖掘的应用中,Scikit-Learn是一个功能强大的Python包,我们可以用它进行分类、特征选择、特征提取和聚集。二、StatsmodelsStatsmodels是另一个聚焦在
2018-03-26 16:29:41
监督学习来执行市场细分- 探索数据可视化技术以多种方式与数据进行交互- 了解如何构建推荐引擎- 理解如何与文本数据交互并构建模型来分析它- 使用隐马尔科夫模型来研究语音数据并识别语音
2019-08-28 15:06:22
及优化器,从而给大家带来清晰的机器学习结构。通过本教程,希望能够给大家带来一个清晰的模型训练结构。当模型训练遇到问题时,需要通过可视化工具对数据、模型、损失等内容进行观察,分析并定位问题出在数据部分
2018-12-21 09:18:02
TF:TF之Tensorboard实践:将神经网络Tensorboard形式得到eventsouttfevents文件+dos内运行该文件本地服务器输出到网页可视化
2018-12-21 10:43:41
TF之CNN:利用sklearn(自带手写图片识别数据集)使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线
2018-12-24 11:36:58
TensorFlow 使用 TensorBoard 来提供计算图形的图形图像。这使得理解、调试和优化复杂的神经网络程序变得很方便。TensorBoard 也可以提供有关网络执行的量化指标。它读取
2020-07-22 21:26:55
本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集。MNIST由https://www.tensorflow.org
2020-08-11 19:36:01
本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集。MNIST由https://www.tensorflow.org
2020-08-11 19:36:31
TF之Tensorboard:Tensorflow之Tensorboard可视化使用之详细攻略
2018-12-27 10:05:13
不需要更复杂的机器学习方法。 传统的数据分析在解释数据方面做的很好,你可以生成过去发生的事件或今天发生的情况的报告或模型,吸取有用的洞见来改善公司的运营情况。 数据分析可以帮助量化和跟踪目标,实现更
2017-04-19 11:01:42
、谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目。本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法
2017-06-01 15:49:24
招聘岗位机器学习/数据挖掘工程师/信号与信息处理(实习) 岗位职责:1.筛选现场基础数据,统计总体数据特性;2.快速学习现场数据特性,对各类现场原始进行有效分类和挖掘。 岗位要求:1.数学专业、信号
2017-08-18 10:26:22
的指导下,这个过程从数据开始。也就是说,我们嵌入式系统产生的大量数据。机器学习开发过程的第一步是收集数据,并在数据输入模型之前对其进行标记。标记是一个关键的分类步骤,也是我们将一组输入与预期输出关联起来
2022-06-21 11:06:37
资源和能量消耗来执行推理,这就是运行机器学习模型并对其输入的数据进行预测的行为。对高性能计算资源的需求将许多机器学习应用程序限制在云中,在云中,数据中心级别的计算随时可用。为了使机器学习能够扩大其
2022-04-12 10:20:35
如果你从西雅图驾车往东行,要不了多久就会看到风力发电机组。这些巨大的机器遍布在连绵起伏的丘陵和平原上,从刮过其间从不间断的风中生产电力。其中每一台风机都会生成海量的数据。这些数据被用于强化机器学习
2021-07-12 06:19:05
的运行速度跟它的低层语言实现的运行速度相比拟的。你没有必要担心程序的运行速度。值得知道的Python程序库Scikit-learn你刚开始学机器学习吗?如果你需要一个涵盖了特征工程,模型训练和模型测试所有
2018-12-11 18:37:19
很多教科书里边都是讲如何应用pspice模型进行分析,但如何进行模型建立,没有太多的介绍,谁有这方面的资料,请求支援,谢谢
2014-07-01 11:30:22
我正在尝试通过 cube-ai 扩展将机器学习模型部署到 STM32H743ZIT6。该模型采用 .tflite 格式。当我尝试分析模型时,结果如下:该工具指出 MCU 总共有 512KB 可用,模型超过了它,但在数据表上我发现有 1024KB。什么原因?
2022-12-30 08:57:53
现在人工智能非常火爆,机器学习应该算是人工智能里面的一个子领域,而其中有一块是对文本进行分析,对数据进行深入的挖掘提取一些特征值,然后用一些算法去学习,训练,分析,甚至还能预测,那么Python中常
2018-05-10 15:20:21
人工智能 AI 正在加快速度从云端走向边缘,进入到越来越小的物联网设备中。而这些物联网设备往往体积很小,面临着许多挑战,例如功耗、延时以及精度等问题,传统的机器学习模型无法满足要求,那么微型机器学习又如何呢?
2021-09-15 09:23:12
小白 机器学习和深度学习必读书籍+机器学习实战视频PPT+大数据分析书籍推荐!
2019-07-22 17:02:39
具有深度学习模型的嵌入式系统应用程序带来了巨大的好处。深度学习嵌入式系统已经改变了各个行业的企业和组织。深度学习模型可以帮助实现工业流程自动化,进行实时分析以做出决策,甚至可以预测预警。这些AI
2021-10-27 06:34:15
在进行数据挖掘或者机器学习模型建立的时候,因为在统计学习中,假设数据满足独立同分布(i.i.d,independently and identically distributed),即当前已产生
2021-01-28 06:57:47
利用机器学习进行人脸颜值评分
2019-10-12 15:11:33
我想用labview做一个数据采集上位机,下位机采集来的数据通过串口传到上位机,之后把数据输入机器学习模型中进行分类。听说可以用matlabscript,但是我看在matlab里使用模型时都是用的函数,比如predict()或是sim(),这些函数也可以在matlabscript里调用吗?
2018-03-21 23:20:24
,学习并探讨软体机器人结构设计、柔性制造、运动控制、装配和调试等内容,使学员熟练应用控制工程理论、自动化、材料力学、机械原理、机械设计、3D打印等基础知识,培养和提高学员对软体机器人目标分析、模型建立、设计制作和实验测试的能力;
2019-08-12 15:09:17
还需要处理模型的更新。模型更新的速度甚至可以非常高,因为模型需要定期地根据最新的数据进行再训练。 本文将描述一种更复杂的机器学习系统的一般部署模式,这些系统是围绕基于嵌入的模型构建的。要理解为什么这些
2022-11-02 15:09:52
简介 研究机器学习用例: 数据科学家建立了一个ML模型,并交给了一个工程团队在生产环境部署。数据工程师将使用Python的模型训练工作流和Java模型服务工作流整合。数据科学家专门设立岗位来训练后期
2017-10-10 14:27:150 监督学习的主要任务就是用模型实现精准的预测。我们希望自己的机器学习模型在新数据(未被标注过的)上取得尽可能高的准确率。换句话说,也就是我们希望用训练数据训练得到的模型能适用于待测试的新数据。正是这样
2017-10-12 15:33:420 的绝对优势。 选择最好的机器学习模型 你如何根据需求选择最好的模型? 在你进行机器学习项目的时候,往往会有许多良好模型可供选择。每个模型都有不同的性能特点。 使用重采样方法,如交叉验证,就可以得到每个模型在未知数据上
2017-10-12 16:33:391 由于随机块模型能够有效处理不具有先验知识的网络,对其研究成为了机器学习、网络数据挖掘和社会网络分析等领域的研究热点.如何设计出具有模型选择能力的快速随机块模型学习算法,是目前随机块模型研究面临
2018-01-09 18:20:041 本文以Kaggle的Titanic入门比赛来讲解stacking的应用,来讨论一下Kaggle机器学习之模型融合。
2018-01-11 19:09:121006 脑网络学习旨在从整体上研究大脑各功能区的交互,对于人类深入了解大脑功能和结构以及对一些脑疾病的诊断都具有非常重要的作用。作为脑网络分析的重要工具,机器学习由于能够从数据中学习规律并对未知数据进行预测
2018-03-05 11:49:5210 随着大数据时代的到来,机器学习成为解决问题的一种重要且关键的工具。不管是工业界还是学术界,机器学习都是一个炙手可热的方向,但是学术界和工 业界对机器学习的研究各有侧重,学术界侧重于对机器学习
2018-05-18 13:13:0015976 机器学习的模型训练完成后,需要经过反覆的探索调校,What-If Tool不需撰写任何程式码,就能探索机器学习模型,让非开发人员眼能参与模型调校工作。
2018-09-14 14:47:282321 对信用卡交易数据建立检测模型,使用Python库进行预处理与机器学习建模工作,代码通俗易懂。包括数据预处理与清洗,模型调参与评估等详细数据分析与建模流程。
2018-10-04 09:44:002783 Waymo十周年之际,发布了自动驾驶机器学习模型的构建思路,原来很多内部架构是由 AutoML 完成的。
2019-01-19 09:05:413036 科学家的主要作用是从数据中提取基础知识。材料科学中机器学习的目标是通过自动识别关键数据之间的关系来获得科学知识的深入理解,从而加速基础科学研究。但如何自动识别关键数据之间的关系尚需深入研究。
2019-07-07 11:25:482623 如何借助机器学习的力量,使用数据做出更好的决策?MATLAB 让机器学习简单易行。借助用于处理大数据的工具和函数,以及让机器学习发挥作用的应用程序,MATLAB 是将机器学习应用于您的数据分析的理想环境。
2019-09-11 16:10:282138 虽然经典机器学习算法需要人工干预来从数据中提取特征,但机器学习算法或网络模型学习如何提取数据中的重要特征并对该数据进行智能预测。
2019-09-11 11:52:152260 在监督学习中,机器在标记数据的帮助下进行训练,即带有正确答案标记的数据。而在无监督机器学习中,模型自主发现信息进行学习。与监督学习模型相比,无监督模型更适合于执行困难的处理任务。
2019-09-20 15:01:302999 机器学习模型的训练,通常是通过学习某一组输入特征与输出目标之间的映射来进行的。一般来说,对于映射的学习是通过优化某些成本函数,来使预测的误差最小化。在训练出最佳模型之后,将其正式发布上线,再根据未来
2020-04-10 08:00:000 由于意外的机器学习模型退化导致了几个机器学习项目的失败,我想分享一下我在机器学习模型退化方面的经验。实际上,有很多关于模型创建和开发阶段的宣传,而不是模型维护。
2020-05-04 12:11:001615 建立机器学习模型的想法是基于一个建设性的反馈原则。你构建一个模型,从指标中获得反馈,进行改进,直到达到理想的精度为止。评估指标解释了模型的性能。评估指标的一个重要方面是它们区分模型结果的能力。
2020-05-04 10:04:002969 决策树模型是白盒模型的一种,其预测结果可以由人来解释。我们把机器学习模型的这一特性称为可解释性,但并不是所有的机器学习模型都具有可解释性。
2020-07-06 09:49:063073 对于初学者来说,这很容易让人混淆,因为“机器学习算法”经常与“机器学习模型”交替使用。这两个到底是一样的东西呢,还是不一样的东西?作为开发人员,你对排序算法、搜索算法等“算法”的直觉,将有助于你厘清这个困惑。在本文中,我将阐述机器学习“算法”和“模型”之间的区别。
2020-07-31 15:38:083347 对于机器学习模型来说,我们常常会提到2个概念:模型准确性(accuracy)和模型复杂度(complexity)。
2021-01-05 14:02:282825 组织构建一个可行的、可靠的、敏捷的机器学习模型来简化操作和支持其业务计划需要耐心、准备以及毅力。各种组织都在为各行业中的众多应用实施人工智能项目。这些应用包括预测分析、模式识别系统、自主系统、会话
2021-01-11 19:25:0014 机器学习和人工智能这两种技术在许多领域广泛应用,尤其是在营销分析和网络安全方面,它们在这些领域的成功应用促使有些人试图将它们用于所有方面。这其中包括使用机器学习系统创建用于定位安全漏洞的静态代码分析器。
2020-12-28 16:08:121699 机器学习可以分为监督学习,半监督学习,非监督学习,强化学习,深度学习等。监督学习是先用带有标签的数据集合学习得到一个模型,然后再使用这个模型对新的标本进行预测。格物斯坦认为:带标签的数据进行特征提取
2021-03-12 16:01:272908 强化学习( Reinforcement learning,RL)作为机器学习领域中与监督学习、无监督学习并列的第三种学习范式,通过与环境进行交互来学习,最终将累积收益最大化。常用的强化学习算法分为
2021-04-08 11:41:5811 机器学习开始在越来越多的行业中得到应用,但使用机器学习执行任务的软件一直受限于第三方软件商更新模型文中基于区块链,将训练神经网络消耗的算力和区块链的工作量证明机制相结合,提出并实现了模型链。模型
2021-04-14 16:09:2615 近年来,机器学习模型算法在越来越多的工业实践中落地。在滴滴,大量线上策略由常规算法迁移到机器学习模型算法。如何搭建机器学习模型算法的质量保障体系成为质量团队急需解决的问题之一。本文整体介绍了机器学习模型算法的质量保障方案,并进一步给出了滴滴质量团队在机器学习模型效果评测方面的部分探索实践。
2021-05-05 17:08:002010 近年来,机器学习在学术研究领域和实际应用领域得到越来越多的关注。但构建机器学习模型不是一件简单的事情,它需要大量的知识和技能以及丰富的经验,才能使模型在多种场景下发挥功效。正确的机器学习模型要以数据
2021-05-05 16:39:001238 根据密码芯片功耗曲线的特性,对支持向量机、随机森林、K最近邻、朴素贝叶斯4种机器学习算法进行分析研究,从中选择用于功耗分析攻击的最优算法。对于机器学习算法的数据选取问题,使用多组数量相同但组成元素
2021-06-03 15:53:585 基于终身机器学习的主题挖掘评分和评论推荐模型
2021-06-27 15:34:3742 机器学习在卫星遥测分析建模中的应用综述
2021-06-29 16:40:4854 总体而言,TensorBoard 是帮助开发和培训过程的绝佳工具。Scalar and Metrics、Image Data 和 Hyperparameter 调优的数据有助于提高准确性,而 profiling 工具有助于提高处理速度。
2022-06-27 11:41:15766 总体而言,TensorBoard 是帮助开发和培训过程的绝佳工具。Scalar and Metrics、Image Data 和 Hyperparameter 调优的数据有助于提高准确性,而 profiling 工具有助于提高处理速度。
2022-07-01 09:44:41600 差异变得至关重要。TensorBoard有助于可视化模型,使分析变得不那么复杂,因为当人们可以看到问题所在时,调试变得更加容易。
2022-10-24 15:53:14471 差异变得至关重要。TensorBoard 有助于可视化模型,使分析变得不那么复杂,因为当人们可以看到问题所在时,调试变得更加容易。
2022-11-22 16:30:51334 机器学习正在突飞猛进地发展,新的神经网络模型定期出现。这些模型针对特定数据集进行了训练,并经过了准确性和处理速度的证明。开发人员需要评估 ML 模型,并确保它在部署之前满足预期的特定阈值和功能
2022-12-06 14:35:10456 原文链接 简介 TensorBoard是TensorFlow自带的一个强大的可视化工具,也是一个Web应用程序套件。 使用 进入保存节点目录,输入: tensorboard --logdir
2023-01-12 17:35:151377 与传统机器学习相比,深度学习是从数据中学习,而大模型则是通过使用大量的模型来训练数据。深度学习可以处理任何类型的数据,例如图片、文本等等;但是这些数据很难用机器完成。大模型可以训练更多类别、多个级别的模型,因此可以处理更广泛的类型。另外:在使用大模型时,可能需要一个更全面或复杂的数学和数值计算的支持。
2023-02-16 11:32:371605 数据挖掘中应用较多的技术机器学习。机器学习主流算法包括三种:关联分析、分类分析、聚类分析。
2023-03-27 14:13:302543 如何评估机器学习模型的性能?典型的回答可能是:首先,将训练数据馈送给学习算法以学习一个模型。第二,预测测试集的标签。第三,计算模型对测试集的预测准确率。
2023-04-04 14:15:19549 电子发烧友网站提供《使用机器学习模型(AI)进行预测是否安全.zip》资料免费下载
2023-06-14 11:04:240 电子发烧友网站提供《使用Azure和机器学习进行传感器数据分析.zip》资料免费下载
2023-06-16 10:57:251 来源:DeepHubIMBA作者:AbhayParashar机器学习是人工智能的一个分支领域,致力于构建自动学习和自适应的系统,它利用统计模型来可视化、分析和预测数据。一个通用的机器学习模型包括
2022-10-19 11:29:21528 电子发烧友网站提供《使用机器学习进行预测.zip》资料免费下载
2023-07-04 10:22:210 使用 RAPIDS RAFT 进行机器学习和数据分析的可重用计算模式
2023-07-05 16:30:31294 实践中的机器学习:构建 ML 模型
2023-07-05 16:30:36412 监控生产中的机器学习模型指南
2023-07-05 16:30:38249 机器学习是一种方法,利用算法来让机器可以自我学习和适应,而且不需要明确地编程。在许多应用中,需要机器使用历史数据训练模型,然后使用该模型来对新数据进行预测或分类
2023-08-02 17:36:34333 随着人工智能的不断发展和应用,机器学习模型的大小越来越成为一个重要的问题。在机器学习中,我们通常将模型分为两类:大模型和小模型。本文将介绍AI大模型和小模型是什么,并分析它们各自的优缺点以及区别。
2023-08-08 16:55:334555 机器学习算法汇总 机器学习算法分类 机器学习算法模型 机器学习是人工智能的分支之一,它通过分析和识别数据模式,学习从中提取规律,并用于未来的决策和预测。在机器学习中,算法是最基本的组成部分之一。算法
2023-08-17 16:11:48632 机器学习是人工智能的一个分支,它是一种让计算机通过大量的数据分析和学习,以便自主预测和决策的技术。它利用算法和统计学的方法,让计算机从数据中“学习”到模式,并使用这些模式来进行自主决策,在没有人
2023-08-22 17:40:54806
评论
查看更多