在机器学习领域中,评估借贷等场景的影响的标准方法就是将一部分数据作为“测试集”,并使用这个测试集来计算相关的性能指标。
2020-02-07 18:29:422868 机器学习按照模型类型分为监督学习模型、无监督学习模型两大类。 1. 有监督学习 有监督学习通常是利用带有专家标注的标签的训练数据,学习一个从输入变量X到输入变量Y的函数映射
2023-09-05 11:45:061161 在这篇文章中,我将逐步讲解如何使用 TensorFlow 创建一个简单的机器学习模型。
2024-01-08 09:25:34272 机器学习模型的性能度量
2020-05-12 10:27:21
本书将机器学习看成一个整体,不管于基于频率的方法还是贝叶斯方法,不管是回归模型还是分类模型,都只是一个问题的不同侧面。作者能够开启上帝视角,将机器学习的林林总总都纳入一张巨网之中
2019-03-18 08:30:00
机器学习:偏差、方差,生成模型,判别模型,先验概率,后验概率
2020-05-14 15:23:39
各种机器学习的应用场景分别是什么?例如,k近邻,贝叶斯,决策树,svm,逻辑斯蒂回归和最大熵模型
2019-09-10 10:53:10
机器学习的未来在工业领域采用机器学习机器学习和大数据工业人工智能生态系统
2020-12-16 07:47:35
机器学习的未来在工业领域采用机器学习机器学习和大数据
2021-01-27 06:02:18
上课时间安排:2022年05月27日 — 2022年05月30日No.1 第一天一、机器学习简介与经典机器学习算法介绍什么是机器学习?机器学习框架与基本组成机器学习的训练步骤机器学习问题的分类
2022-04-28 18:56:07
不同的设备上运行:计算机的CPU,GPU,甚至是手机!训练模型为了训练我们的模型,我们首先需要定义一个指标来评估这个模型是好的。其实,在机器学习,我们通常定义指标来表示一个模型是坏的,这个指标称为成本
2018-03-30 20:05:33
分布和模型收敛的诊断工具,也包含一些层次模型。四、GensimGensim被称为“人们的主题建模工具”,其焦点是狄利克雷划分及变体,其支持自然语言处理,能将NLP和其他机器学习算法更容易组合在一起,还
2018-03-26 16:29:41
用最火的Python语言、通过各种各样的机器学习算法来解决实际问题!资料中介绍的主要问题如下:- 探索分类分析算法并将其应用于收入等级评估问题- 使用预测建模并将其应用到实际问题中- 了解如何使用无
2019-08-28 15:06:22
编程的思想,实现人机交互或者完全智能型的机器人工作性能指标的评估,通过检测以及性能指标和实际环境中的工作状况,判断其实施到生活中的可行性…这次项目,主要是用来不断发现智能机器人的不足之处以及其优点,扬长避短,不断改善,实现可行以及高性能的智能机器人的开发…
2015-11-30 15:56:52
312索引 313版权声明 316工程师和数据科学家处理大量各种格式(如传感器、图像、视频、遥测、数据库等)的数据。他们使用机器学习来寻找数据中的模式,并建立基于历史数据预测未来结果的模型
2017-06-01 15:49:24
机器学习的流程总结出来就是,我们先要设计一个模型,然后定义一个评价指标称之为损失函数,这样我们就知道怎么去判断模型的好坏,接下来就是用一种训练方法,让模型参数能朝着能让损失函数减少的方向运动,当损失函数
2019-09-23 07:00:00
的选择。 如何减少机器学习的碳足迹 图灵奖得主、谷歌杰出工程师DavidPatterson教授对现有的机器学习的研究和工作提出了以下几点建议。首先,从模型开始着手,机器学习研究者需要继续开发效率
2022-09-14 14:57:17
学习算法评估一个用一种特殊的数据来泛化的预测模型。因此,必须有大量的实例,以供机器学习算法用来理解系统的行为。现在,当机器学习算法与新类型的数据一起出现时,系统将能够生成类似的预测。了解机器学习算法
2018-08-27 10:16:55
:用来训练,构建模型。验证集:在模型训练阶段测试模型的好坏。测试集:等模型训练好后,评估模型的好坏。学习方式:监督学习:训练带有标签的数据集。无监督学习:训练无标签的数据集。半监...
2021-09-06 08:21:17
另一方面,机器学习是向计算机提供一组输入和输出,并要求计算机识别“算法”(或用机器学习的说法称为模型)的过程,这种算法每次都将这些输入转化为输出。通常,这需要大量的输入,以确保模型每次都能正确地识别正确
2022-06-21 11:06:37
的领域,它几乎渗透到我们与之互动的每一个数字事物中,无论是社交媒体、手机、汽车,甚至是家用电器。尽管如此,仍然有许多机器学习想要去的地方,但是它们很难到达。这是因为许多最先进的机器学习模型需要大量的计算
2022-04-12 10:20:35
如果你从西雅图驾车往东行,要不了多久就会看到风力发电机组。这些巨大的机器遍布在连绵起伏的丘陵和平原上,从刮过其间从不间断的风中生产电力。其中每一台风机都会生成海量的数据。这些数据被用于强化机器学习
2021-07-12 06:19:05
的运行速度跟它的低层语言实现的运行速度相比拟的。你没有必要担心程序的运行速度。值得知道的Python程序库Scikit-learn你刚开始学机器学习吗?如果你需要一个涵盖了特征工程,模型训练和模型测试所有
2018-12-11 18:37:19
scoreA95%90%92.4 %当你的团队在进行开发时,往往会尝试多种多样的算法架构、模型参数、特征选择,或是一些其它的想法。你可以通过使用单值评估指标(如准确率),根据所有的模型在此指标上的表现
2018-12-12 11:33:35
《Machine Learning Yearning》是人工智能和深度学习大佬吴恩达新出的一本书,该书着重介绍如何让机器学习算法能够工作,以及如何构建机器学习项目。在本文中,我们从该书精选出了七条
2018-09-20 11:41:34
我正在尝试通过 cube-ai 扩展将机器学习模型部署到 STM32H743ZIT6。该模型采用 .tflite 格式。当我尝试分析模型时,结果如下:该工具指出 MCU 总共有 512KB 可用,模型超过了它,但在数据表上我发现有 1024KB。什么原因?
2022-12-30 08:57:53
,词性的解析,分类,语义解释,概率分析还有评估。2.scikit-learnPython社区里面机器学习模块sklearn,内置了很多算法,几乎实现了所有基本机器学习的算法。Python机器学习库主要
2018-05-10 15:20:21
人工智能 AI 正在加快速度从云端走向边缘,进入到越来越小的物联网设备中。而这些物联网设备往往体积很小,面临着许多挑战,例如功耗、延时以及精度等问题,传统的机器学习模型无法满足要求,那么微型机器学习又如何呢?
2021-09-15 09:23:12
如果你对人工智能和机器学习感兴趣,而且正在积极地规划着自己的程序员职业生涯,那么你肯定面临着一个问题:你应该学习哪些编程语言,才能真正了解并掌握 AI 和机器学习?可供选择的语言很多,你需要通过战略
2021-03-02 06:22:38
我想用labview做一个数据采集上位机,下位机采集来的数据通过串口传到上位机,之后把数据输入机器学习模型中进行分类。听说可以用matlabscript,但是我看在matlab里使用模型时都是用的函数,比如predict()或是sim(),这些函数也可以在matlabscript里调用吗?
2018-03-21 23:20:24
,学习并探讨软体机器人结构设计、柔性制造、运动控制、装配和调试等内容,使学员熟练应用控制工程理论、自动化、材料力学、机械原理、机械设计、3D打印等基础知识,培养和提高学员对软体机器人目标分析、模型建立、设计制作和实验测试的能力;
2019-08-12 15:09:17
1、如何在生产中部署基于嵌入的机器学习模型 由于最近大量的研究,机器学习模型的性能在过去几年里有了显著的提高。虽然这些改进的模型开辟了新的可能性,但是它们只有在可以部署到生产应用中时才开始提供真正
2022-11-02 15:09:52
风险评估是评价网络信息系统安全的有效措施之一。该文基于免疫网络可动态实时诊断的特性,提出一种新的信息安全风险评估模型,给出模型中各项指标的定量计算方法,以评估
2009-04-10 08:44:5814 需要被保存和评估的ML模型。 在所有的这些例子中,如果有了模型的持久性,那么保存和加载模型的问题将变得更容易解决。在即将到来的2.0版本中,通过基于DataFrame的API,Spark机器学习库MLlib将实现几乎完整的ML持久性支持。本文将提前透露有关代码示例
2017-10-10 14:27:150 监督学习的主要任务就是用模型实现精准的预测。我们希望自己的机器学习模型在新数据(未被标注过的)上取得尽可能高的准确率。换句话说,也就是我们希望用训练数据训练得到的模型能适用于待测试的新数据。正是这样
2017-10-12 15:33:420 针对指标选取的主观性带来的评估结果准确率低、实时性较差等问题,提出了基于因子分析法和主成分分析法的网络安全态势评估指标优化模型。该模型可以用一组具有较强独立性的综合变量来描述原有的指标体系,从而减少网络安全评估时的计算量。实验表明,模型在不影响准确率的情况下能够得出较为实时的评估结果。
2017-11-21 16:22:015 本文以Kaggle的Titanic入门比赛来讲解stacking的应用,来讨论一下Kaggle机器学习之模型融合。
2018-01-11 19:09:121006 Score)评估死亡率的精准度,结果证实机器学习模型利用电子病历(EHR)超音波心电图资料,确实可准确预测病患的死亡率。
2018-06-29 09:03:001606 由 龙骑士 于 星期二, 2018-09-11 14:21 发表 一、分类模型评估 1、混淆矩阵(confusion matrix) TP(True Positive) —- 将正类预测
2018-09-13 18:04:011025 机器学习的模型训练完成后,需要经过反覆的探索调校,What-If Tool不需撰写任何程式码,就能探索机器学习模型,让非开发人员眼能参与模型调校工作。
2018-09-14 14:47:282321 对信用卡交易数据建立检测模型,使用Python库进行预处理与机器学习建模工作,代码通俗易懂。包括数据预处理与清洗,模型调参与评估等详细数据分析与建模流程。
2018-10-04 09:44:002783 对机器学习的定义和应用实例进行了介绍,涵盖了监督学习。贝叶斯决策理论。参数方法、多元方法、维度归约、聚类、非参数方法、决策树。线性判别式、多层感知器,局部模型、隐马尔可夫模型。分类算法评估和比较,组合多学习器以及增强学习等。
2018-12-14 15:03:5518 传统网络运维评估方法存在两方面的问题:一是在指标选取、权重指定等关键步骤过于依赖领域专家经验,难以得到精确全面的评估结果;二是通信设备用户数量不断增加带来了海量的数据,数据又来自多个厂家以及多种设备,传统方法处理此类海量异构数据的效率较低。
2018-12-27 17:04:463 Waymo十周年之际,发布了自动驾驶机器学习模型的构建思路,原来很多内部架构是由 AutoML 完成的。
2019-01-19 09:05:413036 机器学习性能评价标准是模型优化的前提,在设计机器学习算法过程中,不同的问题需要用到不同的评价标准,本文对机器学习算法常用指标进行了总结。
2019-02-13 15:09:193945 应用落地现状:目前商业化机器学习产品已经落地的行业及应用包括金融行业反欺诈、信用模型评估,跨行业的产品推荐、精准营销,1-2年内正在落地的应用包括能源(尤其是电力)、军工、制造行业。
2019-09-20 14:53:371917 训练集用来训练模型,验证集用于模型的选择,而测试集用于最终对学习方法的评估。
2020-03-15 16:30:001984 本文档的主要内容详细介绍的是机器学习教程之线性模型的详细资料说明。
2020-03-24 08:00:000 本文档的主要内容详细介绍的是机器学习的模型评估与选择详细资料说明。
2020-03-24 08:00:000 这篇文章提供了可以采取的切实可行的步骤来识别和修复机器学习模型的训练、泛化和优化问题。
2020-05-04 12:08:002347 由于意外的机器学习模型退化导致了几个机器学习项目的失败,我想分享一下我在机器学习模型退化方面的经验。实际上,有很多关于模型创建和开发阶段的宣传,而不是模型维护。
2020-05-04 12:11:001615 建立机器学习模型的想法是基于一个建设性的反馈原则。你构建一个模型,从指标中获得反馈,进行改进,直到达到理想的精度为止。评估指标解释了模型的性能。评估指标的一个重要方面是它们区分模型结果的能力。
2020-05-04 10:04:002969 决策树模型是白盒模型的一种,其预测结果可以由人来解释。我们把机器学习模型的这一特性称为可解释性,但并不是所有的机器学习模型都具有可解释性。
2020-07-06 09:49:063073 对于初学者来说,这很容易让人混淆,因为“机器学习算法”经常与“机器学习模型”交替使用。这两个到底是一样的东西呢,还是不一样的东西?作为开发人员,你对排序算法、搜索算法等“算法”的直觉,将有助于你厘清这个困惑。在本文中,我将阐述机器学习“算法”和“模型”之间的区别。
2020-07-31 15:38:083347 准确度 3.2绘制学习曲线得到样本数与准确率的关系 3.3绘制验证曲线得到超参和准确率关系 四、网格搜索 4.1两层for循环暴力检索 4.2构建字典暴力检索 五、嵌套交叉验证 六、相关评价指标
2020-09-25 10:57:241865 对于机器学习模型来说,我们常常会提到2个概念:模型准确性(accuracy)和模型复杂度(complexity)。
2021-01-05 14:02:282825 组织构建一个可行的、可靠的、敏捷的机器学习模型来简化操作和支持其业务计划需要耐心、准备以及毅力。各种组织都在为各行业中的众多应用实施人工智能项目。这些应用包括预测分析、模式识别系统、自主系统、会话
2021-01-11 19:25:0014 在机器学习算法中,在模型训练出来之后,总会去寻找衡量模型性能的指标。评价指标是针对将相同的数据,使用不同的算法模型,或者输入不同参数的同一种算法模型,而给出这个算法或者参数好坏的定量指标。在模型评估
2020-11-27 10:37:311808 对模型进行评估时,可以选择很多种指标,但不同的指标可能得到不同的结果,如何选择合适的指标,需要取决于任务需求。
2020-12-10 21:38:56433 强化学习( Reinforcement learning,RL)作为机器学习领域中与监督学习、无监督学习并列的第三种学习范式,通过与环境进行交互来学习,最终将累积收益最大化。常用的强化学习算法分为
2021-04-08 11:41:5811 机器学习 (ML) 模型的性能既取决于学习算法,也取决于用于训练和评估的数据。算法的作用已经得到充分研究,也是众多挑战(如 SQuAD、GLUE、ImageNet 等)的焦点。此外,数据也已经过改进
2021-04-13 14:37:162332 机器学习开始在越来越多的行业中得到应用,但使用机器学习执行任务的软件一直受限于第三方软件商更新模型文中基于区块链,将训练神经网络消耗的算力和区块链的工作量证明机制相结合,提出并实现了模型链。模型
2021-04-14 16:09:2615 近年来,机器学习模型算法在越来越多的工业实践中落地。在滴滴,大量线上策略由常规算法迁移到机器学习模型算法。如何搭建机器学习模型算法的质量保障体系成为质量团队急需解决的问题之一。本文整体介绍了机器学习模型算法的质量保障方案,并进一步给出了滴滴质量团队在机器学习模型效果评测方面的部分探索实践。
2021-05-05 17:08:002010 近年来,机器学习在学术研究领域和实际应用领域得到越来越多的关注。但构建机器学习模型不是一件简单的事情,它需要大量的知识和技能以及丰富的经验,才能使模型在多种场景下发挥功效。正确的机器学习模型要以数据
2021-05-05 16:39:001238 不同的数据集的十折交叉验证结果进行模型选择,提高测试公平性及测试结果的泛化能力。为避免十折交叉验证过程中出现测试集误差不足以近似泛化误差的问题,采用 Fried man检验及 Nemeny后续检验相结合的方法对4种机器学习算法进行评估
2021-06-03 15:53:585 基于终身机器学习的主题挖掘评分和评论推荐模型
2021-06-27 15:34:3742 机器学习一般涉及数据准备、特征提取、算法选择、模型评估、以及模型存储与复用等诸多步骤;而材料数据往往还涉及晶体或分子的结构特征和元素特征等的提取,更是增加了材料数据机器学习的难度。本次直播将重点讲述材料数据机器学习的难点、痛点、以及解决方案。
2021-12-17 09:12:411300 本文介绍目前常见的几种可以提高机器学习模型的可解释性的技术。
2022-02-26 17:20:191831 本文介绍目前常见的几种可以提高机器学习模型的可解释性的技术,包括它们的相对优点和缺点。
2022-02-16 16:21:313986 在机器学习领域,数据重要还是模型重要?这是一个很难回答的问题。
2022-03-24 14:16:151820 每个模型都有基线指标。我们可以使用「模式类别」作为分类模型的基线指标。如果你的模型优于基准线,那么恭喜你,这是一个好的开始。如果模型能力还没有达到基准水平,这说明你的模型还没有从数据中获得有价值的见解(insight)。为了提高性能,还有很多事情要做。
2022-04-06 15:55:201124 简单来说,机器学习就是针对现实问题,使用我们输入的数据对算法进行训练,算法在训练之后就会生成一个模型,这个模型就是对当前问题通过数据捕捉规律的描述。然后我们将模型进一步导入数据,或者引入新的数据
2022-06-29 10:51:084769 机器学习正在突飞猛进地发展,新的神经网络模型定期出现。这些模型针对特定数据集进行了训练,并经过了准确性和处理速度的证明。开发人员需要评估 ML 模型,并确保它在部署之前满足预期的特定阈值和功能
2022-12-06 14:35:10456 1. 写在前面 模型“好”与“坏”的评价指标直接由业务目标/任务需求决定。我们需要做的是:根据具体的业务目标/任务需求去选择相应的评价指标,继而选出符合业务目标/任务需求的好模型。在此之前,我们需要
2023-01-11 10:10:06534 本文介绍目前常见的几种可以提高机器学习模型的可解释性的技术,包括它们的相对优点和缺点。
2023-02-08 14:08:52861 与传统机器学习相比,深度学习是从数据中学习,而大模型则是通过使用大量的模型来训练数据。深度学习可以处理任何类型的数据,例如图片、文本等等;但是这些数据很难用机器完成。大模型可以训练更多类别、多个级别的模型,因此可以处理更广泛的类型。另外:在使用大模型时,可能需要一个更全面或复杂的数学和数值计算的支持。
2023-02-16 11:32:371605 如何评估机器学习模型的性能?典型的回答可能是:首先,将训练数据馈送给学习算法以学习一个模型。第二,预测测试集的标签。第三,计算模型对测试集的预测准确率。
2023-04-04 14:15:19549 分类是机器学习最常见的应用之一。 分类技术可预测离散的响应 — 例如,电子邮件是不是垃圾邮件,肿瘤是恶性还是良性的。 分类模型可将输入数据划分成不同类别。 典型的应用包括医学成像、语音识别和信用评估。
2023-05-11 09:53:08672 本文介绍了支持 ChatGPT 的机器学习模型的概况,文章将从大型语言模型的介绍开始,深入探讨用来训练 GPT-3 的革命性自我注意机制,然后深入研究由人类反馈的强化学习机制这项让 ChatGPT 与众不同的新技术。
2023-05-26 11:44:32541 来源:DeepHubIMBA作者:AbhayParashar机器学习是人工智能的一个分支领域,致力于构建自动学习和自适应的系统,它利用统计模型来可视化、分析和预测数据。一个通用的机器学习模型包括
2022-10-19 11:29:21528 电子发烧友网站提供《机器学习模型:用于使用边缘脉冲软件预测大象的行为.zip》资料免费下载
2023-06-29 14:47:350 实践中的机器学习:构建 ML 模型
2023-07-05 16:30:36412 监控生产中的机器学习模型指南
2023-07-05 16:30:38249 机器学习是一种方法,利用算法来让机器可以自我学习和适应,而且不需要明确地编程。在许多应用中,需要机器使用历史数据训练模型,然后使用该模型来对新数据进行预测或分类
2023-08-02 17:36:34333 机器学习算法汇总 机器学习算法分类 机器学习算法模型 机器学习是人工智能的分支之一,它通过分析和识别数据模式,学习从中提取规律,并用于未来的决策和预测。在机器学习中,算法是最基本的组成部分之一。算法
2023-08-17 16:11:48632 解一下theta。在机器学习中,theta通常表示模型的参数。在回归问题中,theta可能表示线性回归的斜率和截距;在分类问题中,theta可能表示多项式模型的各项系数。这些参数通常是通过训练数据自动学习得到的,而不是手工设置的。 在机器学习中,优化theta是一
2023-08-17 16:30:081023
评论
查看更多