牵涉到开关电源技术设计或分析成为电子工程师的心头之痛已是不争的事实,由于广大工程师网友对前两期的热烈反响,电子发烧友再接再厉推出《工程师不可不知的开关电源关键设计
2012-02-28 11:16:0412765 牵涉到开关电源技术设计或分析成为电子工程师的心头之痛已是不争的事实,由于广大工程师网友对前四期的热烈反响,电子发烧友网再接再厉推出《工程师不可不知的开关电源关键设
2012-03-09 10:47:335972 人工智能(AI)和高级机器学习(ML)由许多科技和技术(如深度学习、神经网络、自然语言处理)组成,更先进的技术将超越基于规则的传统算法,创造能够理解、学习、预测、适应,甚至可以自主操作的系统。这就是智能机器变得“智能化”的原因。
2016-12-19 09:39:391566 对比去年的 Top 10 榜单,今年榜单中有不少“新”面孔(机器之心已经添加备注),包括一些“大牌”公司,比如波士顿动力、IBM Watson、英特尔、博世、英伟达等。仅代表 RBR 观点。
2017-03-27 08:10:515556 区块链是一种广泛应用于新兴数字加密货币的去中心化基础架构,随着比特币的逐渐被接受而受到关注和研究,其本质上是一个去中心化的分布式账本数据库。区块链技术具有去中心化、区块数据基本不可篡改、去信
2018-01-24 10:24:1122807 机器学习模型指标在机器学习建模过程中,针对不同的问题,需采用不同的模型评估指标。
2023-09-06 12:51:50410 在这篇文章中,我将逐步讲解如何使用 TensorFlow 创建一个简单的机器学习模型。
2024-01-08 09:25:34272 电子发烧友网讯:牵涉到开关电源技术设计或分析成为电子工程师的心头之痛已是不争的事实,由于广大工程师网友对前四期的热烈反响,电子发烧友网再接再厉推出《工程师不可
2012-06-13 17:13:4616301 从双11天猫如此大的交易额不难发现,一套数据生态系统的基本雏形已然形成,接下来的发展将趋向于系统内部角色的细分。未来主要是市场、系统机制模式、系统结构等领域,从而使得数据生态系统复合化程度逐渐增强。
2015-11-12 09:15:361159 据Techworld报道,机器人的历史可追溯到古希腊时代,哲学家亚里士多德(Aristotle)曾谈及自动化工具。而机器人的现代起源则是亨利·福特(Henry Ford)发明的Model T装配线。
2016-09-02 09:32:162242 由于高等数学底子太差的原因,机器学习无法深入学习下去,只能做一个简单的尝试者,甚至连调优也未必能算的上,不过这样也好,可以把重心放到对业务的理解上,以及业务和模型的选择上。
2020-09-27 16:47:001608 工程师不可不知的开关电源关键设计(六)(7)
2019-03-15 12:05:48
不可不知的ARM技术学习诀窍
2012-08-20 23:52:13
DSP芯片。例如,日本OKI 电气公司的DSP芯片、TI公司的TMS320C2XX系列芯片属于这一类。 如果有两种或两种以上的DSP芯片,它们的指令集和相应的机器代码机管脚结构相互兼容,则这类DSP芯片
2016-12-15 19:27:05
工业、科学和医疗系统射频(ISM-RF)产品的电路设计往往非常紧凑。为避免常见的设计缺陷或“陷阱”,需要特别注意这些应用的PCB布局。这些产品可能工作在300MHz至915MHz之间的任何ISM频带,其接收机和发射机的RF功率范围通常介于-120dBm至+13dBm之间。本文主要讨论了电感放置的方向、线路耦合、接地过孔以及引线长度、接地、晶体电容、引线电感等诸多问题。引言工业、科学和医疗射频(ISM-RF)产品的无数应用案例表明,这些产品的印制板(PCB)布局很容易出现各种缺陷。人们时常发现相同IC安装到两块不同电路板上,所表现的性能指标会有显著差异。工作条件、谐波辐射、抗干扰能力,以及启动时间等等诸多因素的变化,都能说明电路板布局在一款成功设计中的重要性。本文罗列了各种不同的设计疏忽,探讨了每种失误导致电路故障的原因,并给出了如何避免这些设计缺陷的建议。本文以FR-4电介质、厚度 0.0625in的双层PCB为例,电路板底层接地。工作频率介于315MHz到915MHz之间的不同频段,Tx和Rx功率介于-120dBm 至+13dBm之间。表1列出了一些可能出现的PCB布局问题、原因及其影响。表1. 典型的PCB布局问题和影响ProblemCauseEffectLNA/tank circuit arrangement (receiver)Inductor orientationRF feedthroughDegeneration/π-network arrangement (transmitter)Inductor orientationRF feedthroughShared ground vias between legs of π networkVia parasiticsFeedthrough, RF leakageShared ground vias between receiver blocksVia parasiticsCrosstalk, RF feedthrough, RF leakageLong traces for decoupling capacitorsHigher-impedance connectionsReduced decouplingWide component placementIncreased parasitics, ground loopsDetuning, crosstalk, feedthroughColinear traces in the transmitter circuitFilter bypassing, i.e., power amplifier (PA) directly to antennaHarmonics radiationTop-layer copper poursParasitic couplingRF leakage, RF interferenceDiscontinuous ground planeReturn current concentrationCrosstalk, feedthroughCrystal connection trace lengthExcess capacitanceLO frequency pullingCrystal connection trace separationExcess capacitanceLO frequency pullingGround plane under crystal padsExcess capacitanceLO frequency pullingPlanar PCB trace inductorsPoor inductance control
其中大多数问题源于少数几个常见原因,我们将对此逐一讨论。电感方向当两个电感(甚至是两条PCB走线)彼此靠近时,将会产生互感。第一个电路中的电流所产生的磁场会对第二个电路中的电流产生激励(图1)。这一过程与变压器初级、次级线圈之间的相互影响类似。当两个电流通过磁场相互作用时,所产生的电压由互感LM决定:式中,YB是向电路B注入的误差电压,IA是在电路A作用的电流1。LM对电路间距、电感环路面积(即磁通量)以及环路方向非常敏感。因此,紧凑的电路布局和降低耦合之间的最佳平衡是正确排列所有电感的方向。图1. 由磁力线可以看出互感与电感排列方向有关对电路B的方向进行调整,使其电流环路平行于电路A的磁力线。为达到这一目的,尽量使电感互相垂直,请参考低功率FSK超外差接收机评估 (EV)板(MAX7042EVKIT)的电路布局(图2)。该电路板上的三个电感(L3、L1和L2)距离非常近,将其方向排列为0°、45°和 90°,有助于降低彼此之间的互感。图2. 图中所示为两种不同的PCB布局,其中一种布局的元件排列方向不合理(L1和L3),另一种的方向排列则更为合适。综上所述,应遵循以下原则:电感间距应尽可能远。电感排列方向成直角,使电感之间的串扰降至最小。引线耦合如同电感排列方向会影响磁场耦合一样,如果引线彼此过于靠近,也会影响耦合。这种布局问题也会产生所谓的互感。RF电路最关心问题之一即为系统敏感部件的走线,例如输入匹配网络、接收器的谐振槽路、发送器的天线匹配网络等。返回电流通路须尽可能靠近主电流通道,将辐射磁场降至最小。这种布局有助于减小电流环路面积。返回电流的理想低阻通路通常是引线下方的接地 区域—将环路面积有效限制在电介质厚度乘以引线长度的区域。但是,如果接地区域被分割开,则会增大环路面积(图3)。对于穿过分割区域的引线,返回电流将 被强制通过高阻通路,大大提高了电流环路面积。这种布局还使电路引线更容易受互感的影响。图3. 完整的大面积接地有助于改善系统性能对于一个实际电感,引线方向对磁场耦合的影响也很大。如果敏感电路的引线必须彼此靠近,最好将引线方向垂直排列,以降低耦合(图4)。如果无法做到垂直排列,则可考虑使用保护线。关于保护线的设计,请参考以下接地与填充处理部分。图4. 类似于图1,表示可能存在的磁力线耦合。综上所述,布板时应遵循以下原则:引线下方应保证完整接地。敏感引线应垂直排列。如果引线必须平行排列,须确保足够的间距或采用保护线。接地过孔RF电路布局的主要问题通常是电路的特征阻抗不理想,包括电路元件及其互联。引线覆铜层较薄,则等效于电感线,并与邻近的其它引线形成分布电容。引线穿过过孔时,也会表现出电感和电容特性。过孔电容主要源于过孔焊盘侧的覆铜与地层覆铜之间构成的电容,它们之间由一个相当小的圆环隔开。另外一个影响源于金属过孔本身的圆柱。寄生电容的影响一般较小,通常只会造成高速数字信号的边沿变差(本文不对此加以讨论)。过孔的最大影响是相应的互联方式所引起的寄生电感。因为RF PCB设计中,大多数金属过孔尺寸与集总元件的尺寸相同,可利用简单的公式估算电路过孔的影响(图5):式中,LVIA为过孔的集总电感;h为过孔高度,单位为英寸;d为过孔直径,单位为英寸2。图5. PCB横截面用于估算寄生影响的过孔结构寄生电感往往对旁路电容的连接影响很大。理想的旁路电容在电源层与地层之间提供高频短路,但是,非理想过孔则会影响地层和电源层之间的低感 通路。典型的 PCB过孔(d = 10 mil、h = 62.5 mil)大约等效于一个1.34nH电感。给定ISM-RF产品的特定工作频率,过孔会对敏感电路(例如,谐振槽路、滤波器以及匹配网络等)造成不良影响。如果敏感电路共用过孔,例如π型网络的两个臂,则会产生其它问题。例如,放置一个等效于集总电感的理想过孔,等效原理图则与原电路设计有很大区别(图6)。与共用电流通路的串扰一样3,导致互感增大,加大串扰和馈通。图6. 理想架构与非理想架构比较,电路中存在潜在的“信号通路”。综上所述,电路布局需要遵循以下原则:确保对敏感区域的过孔电感建模。滤波器或匹配网络采用独立过孔。注意,较薄的PCB覆铜会降低过孔寄生电感的影响。引线长度Maxim ISM-RF产品的数据资料往往建议使用尽可能短的高频输入、输出引线,从而将损耗和辐射降至最小。另一方面,这种损耗通常是由于非理想寄生参数引起的, 所以寄生电感和电容都会影响电路布局,使用尽可能短的引线有助于降低寄生参数。通常情况下,10 mil宽、距离地层0.0625in的PCB引线,如果采用的是FR4电路板,则产生大约19nH/in的电感和大约1pF/in的分布电容。对于具有 20nH电感、3pF电容的LAN/混频器电路,电路、元器件布局非常紧凑时,会对有效元件值造成很大影响。“Institute for Printed Circuits”中的IPC-D-317A4提供了一个行业标准方程,用于估算微带线PCB的各种阻抗参数。该文件在2003年被IPC-2251取代 5,后者为各种PCB引线提供更准确的计算方法。可以通过各种渠道获得在线计算器,其中大多数都基于IPC-2251提供的方程式。密苏里理工大学的电磁兼容性实验室提供了一个非常实用的PCB引线阻抗计算方法6。公认的计算微带线阻抗的标准是:式中,εr为电介质的介电常数,h为引线距离地层的高度,w为引线宽度,t为引线厚度(图7)。w/h介于0.1至2.0、εr介于1至15之间时,该公式的计算结果相当准确7。图7. 该图为PCB横截面(与图5类似),表示用于计算微带线阻抗的结构。为评估引线长度的影响,确定引线寄生参数对理想电路的去谐效应更实用。本例中,我们讨论杂散电容和电感。用于微带线的特征电容标准方程为:举例说明,假设PCB厚度为0.0625in (h = 62.5 mil),1盎司覆铜引线(t = 1.35 mil),宽度为0.01in (w = 10 mil),采用FR-4电路板。注意,FR-4的εr典型值为4.35法拉/米(F/m),但范围可从4.0F/m至4.7F/m。本例计算得到的特征值为Z0 = 134Ω,C0 = 1.04pF/in,L0 = 18.7nH/in。对于ISM-RF设计中,电路板上布局长度为12.7mm (0.5in)的引线,可产生大约0.5pF和9.3nH的寄生参数(图8)。这一等级的寄生参数对于接收器谐振槽路的影响(LC乘积的变化),可能产生 315MHz ±2%或433.92MHz ±3.5%的变化。由于引线寄生效应所产生的附加电容和电感,使得315MHz振荡频率的峰值达到312.17MHz,433.92MHz振荡频率的峰值 达到426.61MHz。图8. 一个紧凑的PCB布局,寄生效应会对电路产生影响。另外一个例子是Maxim的超外差接收机(MAX7042)的谐振槽路,推荐使用的元件在315MHz时为1.2pF和30nH;433.92MHz时为0pF和16nH。利用方程计算谐振电路振荡频率:评估板谐振电路应包括封装和布局的寄生效应,计算315MHz谐振频率时,寄生参数分别为7.3pF和7.5pF。注意,LC乘积表现为集总电容。综上所述,布板须遵循以下原则:保持引线长度尽可能短。关键电路尽量靠近器件放置。根据实际布局寄生效应对关键元件进行补偿。少数几个常见原因4:接地与填充处理#e#接地与填充处理接地或电源层定义了一个公共参考电压,通过低阻通路为系统的所有部件供电。按照这种方式均衡所有电场,产生良好的屏蔽机制。直流电流总是倾向于沿着低阻通路流通。同理,高频电流也是优先流过最低电阻的通路。所以,对于地层上方的标准PCB微带线,返回电流试图流入引线正下方的接地区域。按照上述引线耦合部分所述,割断的接地区域会引入各种噪声,进而通过磁场耦合或汇聚电流而增大串扰(图9)。图9. 尽可能保持地层完整,否则返回电流会引起串扰。填充地也称为保护线,通常将其用于电路中很难铺设连续接地区域或需要屏蔽敏感电路的设计(图10)。通过在引线两端,或者是沿线放置接地过孔(即过孔阵列),增大屏蔽效应8。请不要将保护线与设计用来提供返回电流通路的引线相混合,这样的布局会引入串扰。图10. RF系统设计中须避免覆铜线浮空,特别是需要铺设铜皮的情况下。覆铜区域不接地(浮空)或仅在一端接地时,会制约其有效性。有些情况下,它会形成寄生电容,改变周围布线的阻抗或在电路之间产生“潜在”通 路,从而造成不利影响。简而言之,如果在电路板上铺设了一块覆铜(非电路信号走线),来确保一致的电镀厚度。覆铜区域应避免浮空,因为它们会影响电路设 计。最后,确保考虑天线附近任何接地区域的影响。任何单极天线都将接地区域、走线和过孔作为系统均衡的一部分,非理想均衡布线会影响天线的辐射效率和方向(辐射模板)。因此,不应将接地区域直接放置在单极PCB引线天线的下方。综上所述,应该遵循以下原则:尽量提供连续、低阻的接地区域。填充线的两端接地,并尽量采用过孔阵列。RF电路附近不要将覆铜线浮空,RF电路周围不要铺设铜皮。如果电路板包括多个地层,信号线从一侧过度另一侧时,最好铺设一个接地过孔。晶体电容过大寄生电容会使晶振的工作频率偏离目标值9。因此,须遵循一些常规准则,降低晶体引脚、焊盘、走线或与RF器件连接的杂散电容。应遵循以下原则:晶体与RF器件之间的连线尽可能短。相互之间的走线尽可能保持隔离。如果并联寄生电容太大,则去除晶体下方的接地区域。平面走线电感不建议使用平面走线或PCB螺旋电感,典型PCB制造工艺具有一定的不精确性,例如宽度、空间容差,从而对元件值精度影响非常大。因此,大 多数受控和高Q值电感均为绕线式。其次,可以选择多层陶瓷电感,多层片式电容厂商也提供这种产品。尽管如此,有些设计者还是在不得已的情况下选择了螺线电 感。计算平面螺旋电感的标准公式通常采用惠勒公式10:避免使用这种电感的原因有很多,它们通常受空间限制而导致电感值减小。避免使用平面电感的主要原因是受限制的几何尺寸,以及对临界尺寸的控 制较差,从而无法预测电感值。此外,PCB生产过程中很难控制实际电感值,电感还会将噪声耦合到电路的其它部分的趋向(参见上文中的引线耦合部分)。总而言之,应该:避免使用平面走线电感。尽量使用绕线片式电感。总结如上所述,几种常见的PCB布局陷阱会造成ISM-RF设计问题。然而,注意电路的非理想特性,您完全可避免这些缺陷。补偿这些不希望的影 响需要适当处理表面上无关紧要的事项,例如元件方向、走线长度、过孔布置,以及接地区域的用法。遵守以上的指导原则,您可明显节省浪费在修正错误方面的时间和金钱。
2017-01-18 15:30:20
本帖最后由 wj714088179 于 2015-12-28 22:09 编辑
工业机器人电动伺服系统的一般结构为三个闭环控制,即电流环、速度环和位置环。一般情况下,对于交流伺服驱动器,可通过
2015-12-27 10:10:58
不可不知的嵌入式工程师经验(总结篇)
2012-08-20 10:52:28
的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性.图
2011-10-18 11:26:18
。 迷思一:分辨率=测量精度吗 市面上12位分辨率的数据采集卡的精度都是一样的吗?这个问题困扰了不知多少工程师,而其实质就是分辨率与精度的概念区别。 分辨率通常指的是最大的信号经采样后可以被分成的最小
2011-10-27 09:38:05
机器学习:偏差、方差,生成模型,判别模型,先验概率,后验概率
2020-05-14 15:23:39
机器学习模型的性能度量
2020-05-12 10:27:21
。迁移效果的可视化,利用机器学习库scikit-learn中的t-SNE对迁移过后的高维数据进行可视化。十、实验实操之图片与视频风格迁移实践掌握基于生成对抗网络的风格迁移技术。图像/视频风格迁移网络
2022-04-28 18:56:07
》,提出了完全使用CNN来构成Seq2Seq模型,用于机器翻译,超越了谷歌创造的基于LSTM机器翻译的效果。此网络获得暂时性胜利的重要原因在于采用了很多的窍门,这些技巧值得学习:捕获
2019-07-20 04:00:00
的系统,强制空气冷却也许不可行,这意味着必须采用成本高昂的大表面积薄型散热器来实现散热管理。 AC/DC电源就是输入为交流,输出为直流的电源模块。其中在这模块内部包含有整流滤波电路,降压电路和稳压
2019-03-08 06:00:00
0 6.2 pinv(A)(伪逆矩阵)A为长矩阵7.矩阵的秩rank(a)由于正在学习阶段,难免有错误,望大家不吝赐教。{:4_95:}
2014-07-14 22:49:49
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助
2021-08-13 07:36:45
`《FPGA三国论战》FPGA全解析—不可不看的故事【长篇巨著】 3万字长篇作品 电子发烧友网独家整理倾情奉献不可不看的故事在这个论坛里,看到多数朋友在讨论技术问题。但是关乎产品结构的帖子相对来说
2012-03-20 16:27:03
312索引 313版权声明 316工程师和数据科学家处理大量各种格式(如传感器、图像、视频、遥测、数据库等)的数据。他们使用机器学习来寻找数据中的模式,并建立基于历史数据预测未来结果的模型
2017-06-01 15:49:24
买笔记本电脑不可不知道的10个热点问题
2012-08-10 10:49:57
另一方面,机器学习是向计算机提供一组输入和输出,并要求计算机识别“算法”(或用机器学习的说法称为模型)的过程,这种算法每次都将这些输入转化为输出。通常,这需要大量的输入,以确保模型每次都能正确地识别正确
2022-06-21 11:06:37
对于DSP入门学习者。不可不知的常见问题,此处有解答。
2016-07-01 16:27:38
1、写好LabVIEW程序不可不知的利器(一):模块化功能 VI2、写好LabVIEW程序不可不知的利器(二):State Machine3、写好LabVIEW程序不可不知的利器(三):进阶应用4、写好LabVIEW程序不可不知的利器(四):Event Producer/Consumer
2014-11-20 15:38:19
参与开源共建,你不可不知的贡献技巧近期,在“战码先锋,PR征集令”活动中,上百位开发者们热情踊跃地参与了活动,以提PR的方式为OpenHarmony项目贡献自己的力量。但对于开源新手来说,刚开始接触
2022-08-23 15:27:32
工程师不可不知的开关电源关键设计(二)(4)
2019-03-26 10:50:03
工程师不可不知的开关电源关键设计(三)(4)
2019-03-29 06:56:42
工程师不可不知的开关电源关键设计(五)(4)
2019-03-27 10:09:30
工程师不可不知的开关电源关键设计(四)(4)
2019-03-27 11:30:16
工程师不可不知的开关电源关键设计(一)(4)
2019-04-02 09:19:33
形式链接等优势的FPGA,可以很轻松地进行各种修改或升级,以便在最短时间内支持新的人工智能算法。一些大规模工作负载的扩展(如机器学习,某些网络功能)吸引了越来越多的人关注。
2017-12-29 16:45:29
斯坦福机器学习公开课笔记 一 --单变量线性回归
2020-06-11 13:53:59
无论您是刚入门的电子技术爱好者,还是炉火纯青的电子技术大神,这本惊天秘籍,对您绝对有帮助!电子技术大神和菜鸟都不可不知的惊天秘密云盘地址: https://pan.baidu.com/s/1caWpqe
2017-07-13 08:50:22
原标题:西门子V90伺服调试工程师不可不知的一些事儿西门子V90伺服驱动系统作为SINAMICS驱动系列家族的新成员,与SIMOTICS S-1FL6 完美结合,组成最佳的伺服驱动系统,实现位置控制
2021-09-06 09:18:41
根据软件通讯控制伺服,利用电机联动可不可以实现做出一套六轴机器人控制系统,硬件结构和机械结构先不考虑,用SMT32或者方便一点直接用运动控制卡都可以实现控制,主要是软件设计过程中可能会遇到什么问题
2017-05-10 18:08:54
1、如何在生产中部署基于嵌入的机器学习模型 由于最近大量的研究,机器学习模型的性能在过去几年里有了显著的提高。虽然这些改进的模型开辟了新的可能性,但是它们只有在可以部署到生产应用中时才开始提供真正
2022-11-02 15:09:52
推荐课程:张飞软硬开源:基于STM32的BLDC直流无刷电机驱动器(视频+硬件)http://url.elecfans.com/u/73ad899cfd 学习无刷电机,不可不知道的44个常识!1
2019-07-02 10:51:43
不可不知关于手机电池的一些常识!
关于手机电池寿命! 这是我新买手机的时候在网上搜刮到的资料,我觉得最好还是看看说明书,说明书里
2009-10-24 14:42:41510 七则不可不知的电池常识
一、电池有保质期吗? 电池是通过其内部的正负极发生化学反应,
2009-11-14 10:40:37645 充电电池不可不知的基本常识 一.电压:两极间的电位差称为电池的电压。主要有标称(额定)电压、开路电压、充电终止(截止)
2009-11-14 10:45:483465 手机使用常识及手机电池不可不知的小常识
手机使用常识
1、使用手机时,不要接触天线,否则会影响
2009-11-23 15:20:121821 爱护笔记本不可不读的金科玉律
忌摔 笔记本电脑的第一大戒就是摔。笔记本电脑一般都装在便携包中,放置时一定要把包放在稳妥
2010-01-20 14:05:33217 笔记本电脑电池不可不知的常识
电池的分类和区别 一般我们使用的电池有3种,1.镍铬电池、2.镍氢电池、3.锂电池;它们一般表示为:
2010-01-23 10:06:24605 数码相机术语大全(不可不读)
1.ae锁
ae是au
2010-01-30 14:06:12475 不可不知的投影幕选购常识
前言: 当今,无论是商务活动,还是居家生活,人们对于大屏幕显示画面、高亮度、高分辨率以及高
2010-02-10 11:10:26670 有关域名的不可不t知的八个问题
了解域名的相关知识,下面有关域名的八个经典问题,将会有助于你了解域名相关问题。
2010-02-23 13:50:27686 电脑木马识别的三个小命令(不可不知)
一些基本的命令往往可以在保护网络安全上起到很大的作用,下面几条命令的作用就非常突出。
2010-02-23 14:17:191091 显示卡不可不知15大参数
1、 帧率(Frames
2010-01-12 09:49:04816 您能想象有一天,供应电灯照明的电力线竟然也同时在传送朋友寄给您的E-MAIL吗?或是只要在身边最近的插座插上一个辅助上网的小装置,你就可以尽情和网友聊MSN,不用担心有讯号死
2011-03-25 13:41:4584 Q1: 在高速串行测试时,对测试所需 示波器 有什么样的要求?哪几个指标是最关键的? A: 基本来说对带宽和采样率要满足串行信号的要求,接下来就需要考察是否是差分信号,以及示波器
2011-10-07 13:27:241166 机器人后市场指的是机器人销售之后的维修保养、二手机器人买卖与再制造、机器人金融与租赁等一系列市场。中国机器人后市场尚在萌芽之中,其中的机会不可限量。本文分析了中国机器人后市场可能的机会,并参照其他行业后市场,推测几种可能的商业模式。
2016-10-18 14:02:211316 微软Azure大数据服务魅力凸显 Azure术语不可不知 大数据正上增工,不仅是规模,知名度也在上升。
2016-11-10 11:02:11977 OPPO可以说是如今最火的国产手机品牌之一,其R9系列在今年表现相当出色,销量突破两千万台,可见该机的受欢迎程度之高。除了精致的外观设计和出色的相机表现,在系统方面,OPPO为其定制了基于安卓6.0的ColorOS 3.0,其中有很多好用有趣的功能,今天小编就教大家几招~
2017-01-17 10:58:3912728 机器学习所需要的一些线性代数知识
2017-09-04 10:08:140 IC测试机因为是高端测量,会受到内部开关,引线,pcb板等影响,所以最小电流量程一般为1UA左右;JUNO机等一些分立器件专用测试机,采用低端测量,加上特殊的布线等方式可以达到NA级。我们这里讨论的是采用一种简单通用的方式,实现NA级或NA级以下电流的测试。
2017-10-27 15:50:1316318 当无漏电流或漏电流达不到动作电流时,零序电流以感应出的电压不足以触发可控硅G 极(控制极),此时A极(阳极)与K极(阴极)之间相当于一个大电阻达1M(1M=1000000欧姆)以上,脱扣器线圈一般为几十欧姆(30-60欧姆左右),脱扣器线圈与可控硅等效于串联状态。
2017-11-02 13:49:544319 Linux命令行吸引了大多数Linux爱好者。一个正常的Linux用户一般掌握大约50-60个命令来处理每日的任务。Linux命令和它们的转换对于Linux用户、Shell脚本程序员和管理员来说是最有价值的宝藏。有些Linux命令很少人知道,但不管你是新手还是高级用户,它们都非常方便有用。
2017-11-09 12:14:431248 虽然现在的很多智能手机拥有快充功能,然而大家还是抱怨手机充电速度太慢、手机耗电速度太快!手机充电问题似乎成为了大家关注的重点,那么如何充电能够加快充电速度呢?
2017-12-04 14:10:303450 区块链是金融领域业界人士特别看重的地方。区块链的报导一篇接着一篇,可真正能读懂它的人却是十分的少。区块链本身意义就是交易信用和交易成本的问题,比如说比特币是就是区块链的一种典型应用范例。
2017-12-15 15:20:461141 随着物联网、人工智能技术的发展越来越快,我们所面临的挑战也越来越多,全是数据的物联网怎么把入侵者挡在门外?这五大隐忧不可不提防。
2017-12-26 15:33:49859 示波器是目前应用十分广泛的测试仪器,本文介绍了它的12种功能。
2018-01-16 09:23:4216843 从功能上来说,IGBT就是一个电路开关,用在电压几十到几百伏量级、电流几十到几百安量级的强电上的。(相对而言,手机、电脑电路板上跑的电电压低,以传输信号为主,都属于弱电。)可以认为就是一个晶体管,电压电流超大而已。
2018-03-19 14:37:0010768 工程师不可不知的电源11种拓扑结构基本名词电源常见的拓扑结构■Buck降压■Boost升压■Buck-Boo
2018-04-22 10:06:3137420 不可不知的海思方案安防产品标配DC/DCMP1494和MP1495是两款高频同步整流降压型开关模式转换器,内置功率MOSFET。它提供了一个非常紧凑的解决方案,可在宽输入电源范围内实现2A/3A连续
2018-06-06 11:59:37467 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计。
2018-06-11 17:27:384660 。众所周知,球员素质、团队配合、战术策略等决定各球队的表现,那 决定电销机器人聪明的因素又是哪些? 人工智能不是魔术,它的本质是数据、数字、模型和迭代。 因此,电销机器人绝非天生聪明,而是建立在一系列因素的影响之上。
2018-07-02 14:07:476594 本文主要详细阐述了PCB板工艺不可不知的小原则。
2018-10-05 08:48:005723 本文主要汇总了电气人不可不知的45个电机知识,具体的跟随小编一起来了解一下。
2018-10-05 09:06:004470 目前,智能锁价格在2000~4000元可以轻松入手,不过选择智能锁有三个门道,你不可不知。
2020-03-16 11:11:01477 本文档的主要内容详细介绍的是机器学习教程之线性模型的详细资料说明。
2020-03-24 08:00:000 决策树模型是白盒模型的一种,其预测结果可以由人来解释。我们把机器学习模型的这一特性称为可解释性,但并不是所有的机器学习模型都具有可解释性。
2020-07-06 09:49:063073 对于初学者来说,这很容易让人混淆,因为“机器学习算法”经常与“机器学习模型”交替使用。这两个到底是一样的东西呢,还是不一样的东西?作为开发人员,你对排序算法、搜索算法等“算法”的直觉,将有助于你厘清这个困惑。在本文中,我将阐述机器学习“算法”和“模型”之间的区别。
2020-07-31 15:38:083347 输入检查是利用输入LED指示灯识别,或用写入器构成的输入监视器检查。当输入LED不亮时,可初步确定是外部输入系统故障,再配合万用表检查。如果输出电压不正常,就可确定是输入单元故障。当LED亮而内部监视器无显示时,则可认为是输入单元、CPU单元或扩展单元的故障。
2021-03-23 15:41:05679 电子发烧友网为你提供不可不知的电子工程常用的6大电子元器件,了解一下!资料下载的电子资料下载,更有其他相关的电路图、源代码、课件教程、中文资料、英文资料、参考设计、用户指南、解决方案等资料,希望可以帮助到广大的电子工程师们。
2021-04-19 08:42:0978 你听说过晶体管微缩吗?晶体管微缩是什么情况?作为硬件工程师,不可不知。半导体行业中,“微缩(Scaling)”是一个经
2021-04-28 09:49:272563 近年来,机器学习在学术研究领域和实际应用领域得到越来越多的关注。但构建机器学习模型不是一件简单的事情,它需要大量的知识和技能以及丰富的经验,才能使模型在多种场景下发挥功效。正确的机器学习模型要以数据
2021-05-05 16:39:001238 相信有很多人都很羡慕那些设计大神能够做出杰出的设计,但你知不知道那些大神是用什么软件做出来的呢?下面介绍的这10款软件都是设计大神钟爱的,仔细看一看,总有一款适合你。 1.CorelDRAW
2021-10-25 17:50:24599 简单说就是因为STC单片机的IO有好多都带有复用功能,在单片机上电复位后,这些复用功能引脚的默认状态有一些特殊的规定或处理办法,若你不知晓,很有可能出现灾难性的问题,下面我们就来具体说说这些特殊的IO的用法。
2022-02-09 11:37:353 IO的特殊用法是什么鬼?简单说就是因为STC单片机的IO有好多都带有复用功能,在单片机上电复位后,这些复用功能引脚的默认状态有一些特殊的规定或处理办法,若你不知晓,很有可能出现灾难性的问题,下面我们就来具体说说这些特殊的IO的用法。
2022-02-10 11:19:413 在之前写Verilog时,位拼接符是一个很常见的东西,今天来看下在SpinalHDL中常见的位拼接符的使用。
2022-11-12 11:34:23840 水晶头之所以被称为水晶头,是因为它的外表晶莹透亮,作为一种最基础、最不起眼的周边配套部件,但功能和作用可不小!它适用于设备间或水平子系统的现场端接。常见的水晶头有RJ45网络水晶头和RJ11电话水晶头两种。
2022-12-16 10:29:081784 如何评估机器学习模型的性能?典型的回答可能是:首先,将训练数据馈送给学习算法以学习一个模型。第二,预测测试集的标签。第三,计算模型对测试集的预测准确率。
2023-04-04 14:15:19549 MOSFET电路不可不知MOSFET已成为最常用的三端器件,给电子电路界带来了一场革命。没有MOSFET,现在集成电路的设计似乎是不可能的。它们非常小,制造过程非常简单。由于MOSFET的特性,模拟
2022-05-10 16:35:25802 近万字长文盘点!2022十大AR工业典型案例,不可不看!
2023-01-17 14:43:03963 实现了集成电路,MOSFET电路可以从大信号模型小信号模型两种方式进行分析。大信号模型是非线性的。它用于求解器件电流和电压的de值。小信号模型可以在大信号模型线性化
2023-05-09 09:46:23675 机器学习算法汇总 机器学习算法分类 机器学习算法模型 机器学习是人工智能的分支之一,它通过分析和识别数据模式,学习从中提取规律,并用于未来的决策和预测。在机器学习中,算法是最基本的组成部分之一。算法
2023-08-17 16:11:48632 ⚡️大家好,我是你们的小助手,今天我们要聊一聊【[配网故障定位]】这个技术活。是不是经常听到"配网故障",但是却不知道它具体指的是什么?别急,我在这里一一为你揭晓。 首先,让我们来明确一下
2024-01-04 10:10:54118
评论
查看更多