Kaggle 是互联网上最著名的数据科学竞赛平台之一,今年 3 月 8 日,这家机构被谷歌收购,6 月 6 日又宣布用户数量超过了 100 万人。
2018-06-29 09:11:349600 机器学习按照模型类型分为监督学习模型、无监督学习模型两大类。 1. 有监督学习 有监督学习通常是利用带有专家标注的标签的训练数据,学习一个从输入变量X到输入变量Y的函数映射
2023-09-05 11:45:061161 机器学习模型指标在机器学习建模过程中,针对不同的问题,需采用不同的模型评估指标。
2023-09-06 12:51:50410 在这篇文章中,我将逐步讲解如何使用 TensorFlow 创建一个简单的机器学习模型。
2024-01-08 09:25:34272 kaggle房价实战总结
2019-08-13 10:08:10
数据分析-kaggle泰坦尼克号生存率分析(入门)个人总结
2019-09-05 15:36:07
机器学习:偏差、方差,生成模型,判别模型,先验概率,后验概率
2020-05-14 15:23:39
机器学习模型的性能度量
2020-05-12 10:27:21
机器学习(李航统计学方法)之KNN
2020-04-07 16:20:24
本书将机器学习看成一个整体,不管于基于频率的方法还是贝叶斯方法,不管是回归模型还是分类模型,都只是一个问题的不同侧面。作者能够开启上帝视角,将机器学习的林林总总都纳入一张巨网之中
2019-03-18 08:30:00
本文将探讨机器学习与软件平台的融合。
2021-01-28 06:36:35
各种机器学习的应用场景分别是什么?例如,k近邻,贝叶斯,决策树,svm,逻辑斯蒂回归和最大熵模型
2019-09-10 10:53:10
机器学习的未来在工业领域采用机器学习机器学习和大数据工业人工智能生态系统
2020-12-16 07:47:35
DIY图像压缩——机器学习实战之K-means 聚类图像压缩:色彩量化
2019-08-19 07:07:18
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助
2022-02-09 06:47:38
机器学习的未来在工业领域采用机器学习机器学习和大数据
2021-01-27 06:02:18
秦刚刚的机器学习成长之路之朴素贝叶斯法
2019-05-15 14:41:09
。迁移效果的可视化,利用机器学习库scikit-learn中的t-SNE对迁移过后的高维数据进行可视化。十、实验实操之图片与视频风格迁移实践掌握基于生成对抗网络的风格迁移技术。图像/视频风格迁移网络
2022-04-28 18:56:07
机器学习之随机森林(三)
2019-04-02 10:06:01
个人认为是误解的第三个理解作为立脚点开始向后继续。 这个被王飞跃评价为不存在的AI芯片,不过是上述狭义的机器学习派系中大量算法的不同的实现方式罢了。我们与其去谈用硬件作为AI算法载体的芯片是否存在,不如去讲
2018-08-24 10:36:53
DataWhale一周算法进阶3---模型融合
2020-06-08 12:23:07
Django之模型(二)
2020-05-29 10:01:49
ML之ECS:利用ECS的PAI进行傻瓜式操作机器学习的算法
2018-12-20 10:42:02
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助
2021-08-13 07:36:45
分布和模型收敛的诊断工具,也包含一些层次模型。四、GensimGensim被称为“人们的主题建模工具”,其焦点是狄利克雷划分及变体,其支持自然语言处理,能将NLP和其他机器学习算法更容易组合在一起,还
2018-03-26 16:29:41
STM32学习之SPI如何控制TFT
2021-10-13 08:29:56
数据挖掘实战–桑坦德银行客户交易预测项目一、项目介绍:这是2019年Kaggle的比赛:kaggle官网: https://www.kaggle.com/c
2021-07-01 10:14:40
收到《移动终端人工智能技术与应用开发》有一段时间了,由于时间有限,加上工作原因,目前只看到第3章,前几章主要介绍人工智能和机器学习的基础知识,发展历程,分类等,重点说明了,在移动终端上如何实现人工之
2023-02-27 23:28:20
312索引 313版权声明 316工程师和数据科学家处理大量各种格式(如传感器、图像、视频、遥测、数据库等)的数据。他们使用机器学习来寻找数据中的模式,并建立基于历史数据预测未来结果的模型
2017-06-01 15:49:24
另一方面,机器学习是向计算机提供一组输入和输出,并要求计算机识别“算法”(或用机器学习的说法称为模型)的过程,这种算法每次都将这些输入转化为输出。通常,这需要大量的输入,以确保模型每次都能正确地识别正确
2022-06-21 11:06:37
的领域,它几乎渗透到我们与之互动的每一个数字事物中,无论是社交媒体、手机、汽车,甚至是家用电器。尽管如此,仍然有许多机器学习想要去的地方,但是它们很难到达。这是因为许多最先进的机器学习模型需要大量的计算
2022-04-12 10:20:35
嵌入式系统之硬件总复习提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可
2021-12-16 06:27:44
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助
2021-08-13 07:39:46
如果你从西雅图驾车往东行,要不了多久就会看到风力发电机组。这些巨大的机器遍布在连绵起伏的丘陵和平原上,从刮过其间从不间断的风中生产电力。其中每一台风机都会生成海量的数据。这些数据被用于强化机器学习
2021-07-12 06:19:05
的运行速度跟它的低层语言实现的运行速度相比拟的。你没有必要担心程序的运行速度。值得知道的Python程序库Scikit-learn你刚开始学机器学习吗?如果你需要一个涵盖了特征工程,模型训练和模型测试所有
2018-12-11 18:37:19
加速度计和陀螺仪的数学模型和基本算法是什么?如何进行融合?
2021-11-12 07:15:08
我正在尝试通过 cube-ai 扩展将机器学习模型部署到 STM32H743ZIT6。该模型采用 .tflite 格式。当我尝试分析模型时,结果如下:该工具指出 MCU 总共有 512KB 可用,模型超过了它,但在数据表上我发现有 1024KB。什么原因?
2022-12-30 08:57:53
人工智能 AI 正在加快速度从云端走向边缘,进入到越来越小的物联网设备中。而这些物联网设备往往体积很小,面临着许多挑战,例如功耗、延时以及精度等问题,传统的机器学习模型无法满足要求,那么微型机器学习又如何呢?
2021-09-15 09:23:12
如果你对人工智能和机器学习感兴趣,而且正在积极地规划着自己的程序员职业生涯,那么你肯定面临着一个问题:你应该学习哪些编程语言,才能真正了解并掌握 AI 和机器学习?可供选择的语言很多,你需要通过战略
2021-03-02 06:22:38
深度融合模型的特点,背景深度学习模型在训练完成之后,部署并应用在生产环境的这一步至关重要,毕竟训练出来的模型不能只接受一些公开数据集和榜单的检验,还需要在真正的业务场景下创造价值,不能只是为了PR而
2021-07-16 06:08:20
我想用labview做一个数据采集上位机,下位机采集来的数据通过串口传到上位机,之后把数据输入机器学习模型中进行分类。听说可以用matlabscript,但是我看在matlab里使用模型时都是用的函数,比如predict()或是sim(),这些函数也可以在matlabscript里调用吗?
2018-03-21 23:20:24
谈一谈 MPU6050 姿态融合
2020-05-05 09:28:07
,学习并探讨软体机器人结构设计、柔性制造、运动控制、装配和调试等内容,使学员熟练应用控制工程理论、自动化、材料力学、机械原理、机械设计、3D打印等基础知识,培养和提高学员对软体机器人目标分析、模型建立、设计制作和实验测试的能力;
2019-08-12 15:09:17
的领域适配。迁移效果的可视化,利用机器学习库scikit-learn中的t-SNE对迁移过后的高维数据进行可视化。十、实验实操之图片与视频风格迁移实践掌握基于生成对抗网络的风格迁移技术。图像/视频风格
2022-04-21 15:15:11
1、如何在生产中部署基于嵌入的机器学习模型 由于最近大量的研究,机器学习模型的性能在过去几年里有了显著的提高。虽然这些改进的模型开辟了新的可能性,但是它们只有在可以部署到生产应用中时才开始提供真正
2022-11-02 15:09:52
简介 研究机器学习用例: 数据科学家建立了一个ML模型,并交给了一个工程团队在生产环境部署。数据工程师将使用Python的模型训练工作流和Java模型服务工作流整合。数据科学家专门设立岗位来训练后期
2017-10-10 14:27:150 监督学习的主要任务就是用模型实现精准的预测。我们希望自己的机器学习模型在新数据(未被标注过的)上取得尽可能高的准确率。换句话说,也就是我们希望用训练数据训练得到的模型能适用于待测试的新数据。正是这样
2017-10-12 15:33:420 立足当下,面向未来。青识智能深度探究机器学习与图像融合的技术基于TOF硬件平台的技术应用(创新性开发多TOF矩阵产品,在传统TOF基础上增加机器学习算法和图形图像融合、建模技术)。
2018-04-29 16:35:004553 科技博客TechCrunch援引消息人士报道称,谷歌正在收购Kaggle —— 一个举办数据科学和机器学习竞赛的平台。有关此次交易的详细信息目前还未披露,但是考虑到谷歌本周在旧金山召开Cloud Next云技术大会,官方消息很可能会在明天公布。
2018-05-08 08:58:00564 /数据科学工具包,上文介绍的Python Machine Learning书中就大量使用Sklearn的API。和使用Kaggle的目的一致,学习的Sklearn的文档也是一种实践过程。比较推荐的方法是把主流机器学习模型Sklearn中的例子都看一遍
2018-05-14 15:54:324514 来看下完整的数据集,可以看到分布在七张表中有 5800 万行数据,而机器学习方法需要针对一张表进行模型训练。此时,特征工程就需要将每个客户的所有信息提取并融合到一个表中。
2018-09-05 09:17:047764 机器学习的模型训练完成后,需要经过反覆的探索调校,What-If Tool不需撰写任何程式码,就能探索机器学习模型,让非开发人员眼能参与模型调校工作。
2018-09-14 14:47:282321 还有很多各式各样的疑问充满了机器学习的历程和工程实践中。但这本书为我们带来了一个对机器视觉的全新视角:model-based 机器学习。基于模型的机器学习将会给你不同的视角解答上面的问题,并将帮助你创造出更加有效的算法,当然算法也更加透明。
2018-10-21 10:50:135773 Waymo十周年之际,发布了自动驾驶机器学习模型的构建思路,原来很多内部架构是由 AutoML 完成的。
2019-01-19 09:05:413036 本文档的主要内容详细介绍的是机器学习教程之线性模型的详细资料说明。
2020-03-24 08:00:000 本文档的主要内容详细介绍的是机器学习的模型评估与选择详细资料说明。
2020-03-24 08:00:000 机器学习模型的训练,通常是通过学习某一组输入特征与输出目标之间的映射来进行的。一般来说,对于映射的学习是通过优化某些成本函数,来使预测的误差最小化。在训练出最佳模型之后,将其正式发布上线,再根据未来
2020-04-10 08:00:000 这篇文章提供了可以采取的切实可行的步骤来识别和修复机器学习模型的训练、泛化和优化问题。
2020-05-04 12:08:002347 由于意外的机器学习模型退化导致了几个机器学习项目的失败,我想分享一下我在机器学习模型退化方面的经验。实际上,有很多关于模型创建和开发阶段的宣传,而不是模型维护。
2020-05-04 12:11:001615 几个月前,我在悉尼参加了一个会议。会上fast.ai向我介绍了一门在线机器学习课程,那时候我根本没注意。这周在Kaggle竞赛寻找提高分数的方法时,我又遇到了这门课程。我决定试一试。
2020-05-05 08:50:002243 建立机器学习模型的想法是基于一个建设性的反馈原则。你构建一个模型,从指标中获得反馈,进行改进,直到达到理想的精度为止。评估指标解释了模型的性能。评估指标的一个重要方面是它们区分模型结果的能力。
2020-05-04 10:04:002969 决策树模型是白盒模型的一种,其预测结果可以由人来解释。我们把机器学习模型的这一特性称为可解释性,但并不是所有的机器学习模型都具有可解释性。
2020-07-06 09:49:063073 对于初学者来说,这很容易让人混淆,因为“机器学习算法”经常与“机器学习模型”交替使用。这两个到底是一样的东西呢,还是不一样的东西?作为开发人员,你对排序算法、搜索算法等“算法”的直觉,将有助于你厘清这个困惑。在本文中,我将阐述机器学习“算法”和“模型”之间的区别。
2020-07-31 15:38:083347 对于机器学习模型来说,我们常常会提到2个概念:模型准确性(accuracy)和模型复杂度(complexity)。
2021-01-05 14:02:282825 组织构建一个可行的、可靠的、敏捷的机器学习模型来简化操作和支持其业务计划需要耐心、准备以及毅力。各种组织都在为各行业中的众多应用实施人工智能项目。这些应用包括预测分析、模式识别系统、自主系统、会话
2021-01-11 19:25:0014 1. LightGBM简介 GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型
2021-01-05 14:27:352645 强化学习( Reinforcement learning,RL)作为机器学习领域中与监督学习、无监督学习并列的第三种学习范式,通过与环境进行交互来学习,最终将累积收益最大化。常用的强化学习算法分为
2021-04-08 11:41:5811 机器学习开始在越来越多的行业中得到应用,但使用机器学习执行任务的软件一直受限于第三方软件商更新模型文中基于区块链,将训练神经网络消耗的算力和区块链的工作量证明机制相结合,提出并实现了模型链。模型
2021-04-14 16:09:2615 近年来,机器学习模型算法在越来越多的工业实践中落地。在滴滴,大量线上策略由常规算法迁移到机器学习模型算法。如何搭建机器学习模型算法的质量保障体系成为质量团队急需解决的问题之一。本文整体介绍了机器学习模型算法的质量保障方案,并进一步给出了滴滴质量团队在机器学习模型效果评测方面的部分探索实践。
2021-05-05 17:08:002010 近年来,机器学习在学术研究领域和实际应用领域得到越来越多的关注。但构建机器学习模型不是一件简单的事情,它需要大量的知识和技能以及丰富的经验,才能使模型在多种场景下发挥功效。正确的机器学习模型要以数据
2021-05-05 16:39:001238 。机器学习和图像分类也不例外,工程师们可以通过参加像Kaggle这样的竞赛来展示最佳实践。在这篇文章中,我将给你很多资源来学习,聚焦于从13个Kaggle比赛中挑选出的最好的Kaggle kernel。 这些比赛是: Intel Image Classification:https://w
2021-06-27 09:26:541814 基于终身机器学习的主题挖掘评分和评论推荐模型
2021-06-27 15:34:3742 2021年OPPO开发者大会刘海锋:融合知识的NLP预训练大模型,知识融合学习运用在小布助手里面。
2021-10-27 14:48:162251 本文介绍目前常见的几种可以提高机器学习模型的可解释性的技术。
2022-02-26 17:20:191831 本文介绍目前常见的几种可以提高机器学习模型的可解释性的技术,包括它们的相对优点和缺点。
2022-02-16 16:21:313986 在机器学习领域,数据重要还是模型重要?这是一个很难回答的问题。
2022-03-24 14:16:151820 虽然大多数深度学习模型都是在 Linux 系统上训练的,但 Windows 也是一个非常重要的系统,也可能是很多机器学习初学者更为熟悉的系统。要在 Windows 上开发模型,首先当然是配置开发环境
2022-11-08 10:57:441101 机器学习正在突飞猛进地发展,新的神经网络模型定期出现。这些模型针对特定数据集进行了训练,并经过了准确性和处理速度的证明。开发人员需要评估 ML 模型,并确保它在部署之前满足预期的特定阈值和功能
2022-12-06 14:35:10456 本文介绍目前常见的几种可以提高机器学习模型的可解释性的技术,包括它们的相对优点和缺点。
2023-02-08 14:08:52861 与传统机器学习相比,深度学习是从数据中学习,而大模型则是通过使用大量的模型来训练数据。深度学习可以处理任何类型的数据,例如图片、文本等等;但是这些数据很难用机器完成。大模型可以训练更多类别、多个级别的模型,因此可以处理更广泛的类型。另外:在使用大模型时,可能需要一个更全面或复杂的数学和数值计算的支持。
2023-02-16 11:32:371605 如何评估机器学习模型的性能?典型的回答可能是:首先,将训练数据馈送给学习算法以学习一个模型。第二,预测测试集的标签。第三,计算模型对测试集的预测准确率。
2023-04-04 14:15:19549 本文介绍了支持 ChatGPT 的机器学习模型的概况,文章将从大型语言模型的介绍开始,深入探讨用来训练 GPT-3 的革命性自我注意机制,然后深入研究由人类反馈的强化学习机制这项让 ChatGPT 与众不同的新技术。
2023-05-26 11:44:32541 电子发烧友网站提供《使用机器学习模型(AI)进行预测是否安全.zip》资料免费下载
2023-06-14 11:04:240 来源:DeepHubIMBA作者:AbhayParashar机器学习是人工智能的一个分支领域,致力于构建自动学习和自适应的系统,它利用统计模型来可视化、分析和预测数据。一个通用的机器学习模型包括
2022-10-19 11:29:21528 电子发烧友网站提供《机器学习模型:用于使用边缘脉冲软件预测大象的行为.zip》资料免费下载
2023-06-29 14:47:350 实践中的机器学习:构建 ML 模型
2023-07-05 16:30:36412 监控生产中的机器学习模型指南
2023-07-05 16:30:38249 机器学习是一种方法,利用算法来让机器可以自我学习和适应,而且不需要明确地编程。在许多应用中,需要机器使用历史数据训练模型,然后使用该模型来对新数据进行预测或分类
2023-08-02 17:36:34333 机器学习算法汇总 机器学习算法分类 机器学习算法模型 机器学习是人工智能的分支之一,它通过分析和识别数据模式,学习从中提取规律,并用于未来的决策和预测。在机器学习中,算法是最基本的组成部分之一。算法
2023-08-17 16:11:48632 解一下theta。在机器学习中,theta通常表示模型的参数。在回归问题中,theta可能表示线性回归的斜率和截距;在分类问题中,theta可能表示多项式模型的各项系数。这些参数通常是通过训练数据自动学习得到的,而不是手工设置的。 在机器学习中,优化theta是一
2023-08-17 16:30:081023
评论
查看更多