ASIC和FPGA具有不同的价值主张,在作出选择前必须仔细评估。两种种技术对比。这里介绍了ASIC和FPGA 的优势与劣势。
2011-03-31 17:30:095382 不久前,据国外媒体报道,华为公司正在首次使用ASIC来替代其设备中的FPGA芯片,而这些芯片原本采购于FPGA主要厂商之一的Altera【 电子发烧友网关于此事报道:华为ASIC设计案,FPGA双雄
2012-11-14 08:47:561970 很多读者可能分不清楚 CPU、GPU 和 TPU 之间的区别,因此 Google Cloud 将在这篇博客中简要介绍它们之间的区别,并讨论为什么 TPU 能加速深度学习。
2018-09-04 11:12:573938 当前主流的AI芯片主要分为三类,GPU、FPGA、ASIC。GPU、FPGA均是前期较为成熟的芯片架构,属于通用型芯片。ASIC属于为AI特定场景定制的芯片。行业内已经确认CPU不适用于AI计算,但是在AI应用领域也是必不可少。
2023-02-14 11:03:562495 CPU、GPU 都属于冯·诺依曼结构,指令译码执行、共享内存。FPGA 之所以比 CPU 甚至 GPU 能效高,本质上是无指令、无需共享内存的体系结构带来的福利。
2022-11-22 16:00:051256 算力有着不小需求的应用来说,ASIC和FPGA是否也能借上这股东风呢? 不同硬件的成本对比 在机器学习推理场景中,除了GPU外,还有一大通用AI硬件适合这一负载,那就是FPGA。与GPU一样,在技术和算法还未成熟且仍在打磨阶段时,可以随时重新编程改变芯片功能的
2023-02-22 09:23:295571 电子发烧友网报道(文/周凯扬)随着AI计算逐渐蚕食通用计算的份额,数据中心的硬件市场已经开始出现了微妙的变化。最抢手的目前已经成了GPU,反观CPU、ASIC和FPGA等硬件,开始成为陪衬。但高昂
2023-07-17 00:01:00952 电子发烧友网报道(文/周凯扬)随着AI计算开始有着风头盖过通用计算开始,不少芯片厂商都将其视为下一轮技术革新。CPU、GPU、FPGA和ASIC纷纷投入到这轮AI革命中来,但斩获的战果却是有多有
2023-12-03 08:31:341318 可乘之机。作为国内最优秀的AI芯片公司,深鉴科技被以3亿美元的价格卖给FPGA巨头赛灵思。过去两年,深鉴科技是国内AI芯片领域冉冉升起的一颗明星。这家2016年3月成立的初创公司目前已完成三轮融资,投资方
2018-07-31 09:56:50
、GPU、FPGA及ASIC四种,依特性与使用目的不同又可区分为云端运算与边缘运算。 前者云端运算因为需要处理庞大数据,加上长时间运作,芯片需求特性为功耗较高,整体效能佳,主要应用在数据中心与超级计算机
2017-12-05 08:09:38
进行重新编程。 2、开发流程区别: FPGA开发是利用HDL和quartus、vivado等EDA工具,重新配置(configure)芯片的功能,而ASIC通常都具有较少的可重配置能力。 ASIC
2020-12-01 17:41:49
专用集成电路(ASIC)采用硬接线的固定模式,而现场可编程门阵列 (FPGA)则采用可配置芯片的方法,二者差别迥异。可编程器件是目前的新生力量,混合技术也将在未来发挥作用。 与其他技术一样,有关
2019-07-19 06:24:30
。ASIC 的特点是面向特定用户的需求, ASIC 分为全定制和半定制。亮点在于专用,量身定制所以执行速度较快。一句话总结就是,市场上买不到的芯片。水果的 A 系列处理器就是典型的 ASIC。二、FPGA
2020-09-25 11:34:41
。ASIC的特点是面向特定用户的需求, ASIC分为全定制和半定制。亮点在于专用,量身定制所以执行速度较快。一句话总结就是,市场上买不到的芯片。水果的A系列处理器就是典型的ASIC。FPGA是可复用
2017-09-02 22:24:53
FPGA的用处比我们平时想象的用处更广泛,原因在于其中集成的模块种类更多,而不仅仅是原来的简单逻辑单元(LE)。早期的FPGA相对比较简单,所有的功能单元仅仅由管脚、内部buffer、LE、RAM构建而成,LE由LUT(查找表)和D触发器构成,RAM也往往容量非常小。
2019-10-15 06:20:52
有流水处理和响应迅速的特点。 芯片解密认为,FPGA一般来说比ASIC的速度要慢,无法完成复杂的设计,但是功耗较低。但是他们也有很多的优点比如可以快速成品,可以被修改来改正程序中的错误和更便宜的造价
2017-06-12 15:56:59
对神经网络进行任何更改,也不需要学习任何新工具。不过你可以保留你的 GPU 用于训练。”
Zebra 提供了将深度学习代码转换为 FPGA 硬件指令的抽象层
AI 硬件前景
2024-03-21 15:19:45
清源塑胶经营. 供应TPU塑胶原料.副牌.再生颗粒料.TPU塑胶.TPU透明副牌. 再生粒子.白色.黑色.透明. 注塑料.挤出料. 压延等等..聚醚. 脂肪料. 聚酯料.硬度70A--98A.
2021-11-21 17:21:25
ai芯片和gpu的区别▌车载芯片的发展趋势(CPU-GPU-FPGA-ASIC)过去汽车电子芯片以与传感器一一对应的电子控制单元(ECU)为主,主要分布与发动机等核心部件上。...
2021-07-27 07:29:46
四大FPGA供应商专家谈FPGA设计诀窍 :Actel、Altera、Lattice Semiconductor和Xilinx是目前业界最主要的四大FPGA供应商,为了帮助中国的应用开发工程师更深
2012-02-27 15:18:09
基本可以是算卖给了紫光;Mali是鼎鼎大名的安谋半导体ARM的图形加速IP;Adreno是高通的图形GPU。当然这里不是要对比这些GPU的性能,而是简单介绍下Mali的GPU系列。Mali其实是Arm
2022-04-12 11:01:11
和功能规格边缘TPU模块CPU:i.MX 8M应用处理器(四核Cortex-A53,Cortex-M4F)GPU:集成的GC7000 Lite图形ML加速器:Google Edge TPU协处理器RAM
2019-05-29 10:43:33
嵌入式算法移植优化学习笔记5——CPU,GPU,TPU,NPU都是什么一、什么是CPU?二、什么是GPU?三、什么是TPU?四、什么是NPU?附:一、什么是CPU?中央处理器(CPU),是电子计算机
2021-12-15 06:07:07
MCU、DSP、GPU、MPU、CPU、DPU、FPGA、ASIC、SOC、ECU、NPU、TPU、VPU、APU、BPU、ECU、FPU、EPU、这些主控异同点有哪些?
2021-12-17 17:07:47
Block)和内部连线(Interconnect)三个部分。FPGA的基本特点主要有: 1)采用FPGA设计ASIC电路,用户不需要投片生产,就能得到合用的芯片。 2)FPGA可做其它全定制或半
2012-02-27 17:46:03
Freeman在1989年年仅41岁就因肺炎不幸早逝。目前人工智能的产业重心,已经从早期的深度学习算法和框架,转到了AI硬件平台。Google开发出专用的AI芯片——TPU,如下图。可是,另一个巨头
2018-08-21 09:50:44
,与CPU、存储器、DSP并称为四大通用集成电路芯片,它属于半导体行业无法缺少的一块,而国内半导体正处在蓬勃的发展阶段,各类高科技公司需求旺盛。
2020-10-29 07:27:37
[导读]什么是FPGA,单片机,DSP,ASIC?你真的知道吗?ASIC原本就是专门为某一项功能开发的专用集成芯片,比如你看摄像头里面的芯片,小小的一片,集成度很低,成本很低,可是够用了。一个山寨
2021-07-16 08:13:27
什么是PCB射频电路四大基础?在PCB设计过程中需要特别注意的重要因素有哪些?
2019-08-21 06:22:29
在 FPGA、GPU 或 ASIC 控制的系统板上,仅有为数不多的几种电源管理相关的设计挑战,但是由于需要反复调试,所以这类挑战可能使系统的推出时间严重滞后。
2019-10-09 06:21:11
在 FPGA、GPU 或 ASIC 控制的系统板上,仅有为数不多的几种电源管理相关的设计挑战,但是由于需要反复调试,所以这类挑战可能使系统的推出时间严重滞后。
2019-09-30 06:59:24
prototyping在复杂时钟设计中的表现也令人堪忧。对于FPGA的初学者,门控时钟(clock gating,CG)几乎是完全不推荐的。而作为最主流的ASIC降功耗手段,CG几乎存在AI芯片的每一角
2023-03-28 11:14:04
使用者要求和特定电子系统的需要而设计、制造。这里之所以特殊说明是因为我们下面介绍的TPU也算是一种ASIC。FPGA与ASIC芯片各有缺点,FPGA一般来说比ASIC的速度要慢,而且无法完成更复杂
2017-03-15 11:40:15
用在ADAS(高级驾驶辅助系统)和伺服电机驱动上。
消费电子用FPGA,是因为产品迭代太快。ASIC的开发周期太长了,等做出东西来,黄花菜都凉了。
FPGA、ASIC、GPU,谁是最合适的AI芯片
2024-01-23 19:08:55
在不久将来的AI时代,FPGA和GPU之间谁能脱颖而出,成为行业的领航者?就像英特尔之于PC时代,高通之于移动通讯时代?或者,您有其他更好的选择,比如代表ASIC的谷歌TPU...可以从您所从事的行业,研究的领域举例说明。
2018-03-29 09:47:00
需求。•功耗:GPU平均功耗(200W)远高于FPGA平均功耗(10W),可有效解决散热问题。ASIC芯片专用度高,开发流程非重复成本(流片)极高,5G商用普及初期,FPGA可依托灵活性抢占市场,但
2021-07-04 08:30:00
需求。•功耗:GPU平均功耗(200W)远高于FPGA平均功耗(10W),可有效解决散热问题。ASIC芯片专用度高,开发流程非重复成本(流片)极高,5G商用普及初期,FPGA可依托灵活性抢占市场,但
2021-07-04 08:30:00
的 Edge TPU 扮演着关键角色——这款专用 ASIC 旨在将机器学习推理能力引入边缘设备。在近一年之后,两款产品以“Coral”的名号推出了“Beta 测试版”,且目前已经可供感兴趣的朋友购买。另外,这
2019-03-05 21:20:23
的ABfly模块和FBfly模块的数量可以作为超参进行配置。基于这两个参数,开发了一种软硬件协同设计方法如下图所示,实现了神经架构和硬件设计的设计空间探索。四、结论本文分析了FPGA和GPU以及ASIC
2023-02-08 15:26:46
工程师手记:FPGA学习的四大误区
2012-08-17 23:47:34
AI芯片产品的设计和开发;技巧提升:课程剖析AI芯片开发流程及技巧,学员可熟悉AI芯片架构设计的各种处理技巧、芯片架构在FPGA上执行的方法,掌握AI芯片的工程应用和部署;配套开发板:配备与课程配套
2019-07-19 11:54:01
背景介绍数据、算法和算力是人工智能技术的三大要素。其中,算力体现着人工智能(AI)技术具体实现的能力,实现载体主要有CPU、GPU、FPGA和ASIC四类器件。CPU基于冯诺依曼架构,虽然灵活,却
2021-07-26 06:47:30
,支持广泛的应用程序和动态工作负载。本文将讨论这些行业挑战可以在不同级别的硬件和软件设计采用Xilinx VERSAL AI核心,业界首创自适应计算加速平台超越了CPU/GPU和FPGA的性能。
2020-11-01 09:28:57
在 FPGA、GPU 或 ASIC 控制的系统板上,仅有为数不多的几种电源管理相关的设计挑战,但是由于需要反复调试,所以这类挑战可能使系统的推出时间严重滞后。不过,如果特定设计或类似设计已经得到
2018-10-15 10:30:31
在 FPGA、GPU 或 ASIC控制的系统板上,仅有为数不多的几种电源管理相关的设计挑战,但是由于需要反复调试,所以这类挑战可能使系统的推出时间严重滞后。不过,如果特定设计或类似设计已经得到
2018-11-20 10:46:52
全新赛灵思(Xilinx)FPGA 7系列芯片精彩剖析:赛灵思的最新7系列FPGA芯片包括3个子系列,Artix-7、 Kintex-7和Virtex-7。在介绍芯片之前,先看看三个子系列芯片的介绍表,如下表1所示: 表
2012-08-08 15:04:04395 在 FPGA、GPU 或 ASIC 控制的系统板上,仅有为数不多的几种电源管理相关的设计挑战,但是由于需要反复调试,所以这类挑战可能使系统的推出时间严重滞后。不过,如果特定设计或类似设计已经得到电源
2016-11-04 15:57:06611 昨日,Google资深硬件工程师Norman Jouppi刊文表示,Google的专用机器学习芯片TPU处理速度要比GPU和CPU快15-30倍(和TPU对比的是IntelHaswell CPU以及NVIDIA Tesla K80 GPU),而在能效上,TPU更是提升了30到80倍。
2017-04-06 15:50:48568 长达17页的报告中,Google深入剖析其TPU和测试基准显示比目前的商用芯片更快至少15倍的速度,并提供更高30倍的效能功耗比(P/W)。
2017-04-28 09:39:281072 AI领域GPU 占据着主导地位,也凭借Nvidia、超微(AMD)的高速发展GPU 在人工智慧(AI)运算才能大放异彩,分析师预示明年GPU的主导地位可能不再,换ASIC称王。
2017-12-15 14:39:59844 从上面的对比来看,能耗比方面:ASIC > FPGA > GPU > CPU,产生这样结果的根本原因:对于计算密集型算法,数据的搬移和运算效率越高的能耗比就越高。ASIC和FPGA都是更接近底层IO
2018-01-02 15:58:448875 NovuMind推出的AI 芯片 NovuTensor号称是除了TPU 之外,跑得最快的单芯片,相同用电的情况下,性能是最先进的移动端或嵌入式芯片三倍以上。耗电将减少一半,耗能不超过 5 瓦。
2018-01-12 10:54:591255 FPGA仿真篇-使用脚本命令来加速仿真二 基于FPGA的HDMI高清显示借口驱动 基于FPGA灰度图像高斯滤波算法的实现 FPGA为什么比CPU和GPU快 基于Xilinx FPGA的视频图像采集
2018-02-20 20:49:001479 几乎所有深度学习的研究者都在使用GPU,但是对比深度学习硬鉴方案,ASIC、FPGA、GPU三种究竟哪款更被看好?主要是认清对深度学习硬件平台的要求。
2018-02-02 15:21:4010206 的AI芯片,比如谷歌的TPU,本质上都是一个ASIC硬件。此外,黄仁勋还在昨天的采访中确认了英伟达暂停公共道路上无人驾驶汽车测试的消息,并解释了原因。
2018-04-02 05:54:003575 比特大陆开发的比特币ASIC芯片,挖矿效益远优于GPU,ASIC早已成了比特币的挖矿主流。在此之前,以太币没有专属的ASIC芯片,矿工只能使用GPU挖矿,以太币的挖矿热潮,让AMD、Nvidia
2018-04-01 09:17:003512 不过在联发科副总经理暨智能设备事业群总经理游人杰看来,虽然CPU、GPU等通用型芯片以及FPGA可以适应相对更多种的算法,但是特定算法下ASIC的性能和效能要更高。另外,虽然FPGA的便定制特性比ASIC芯片更加灵活,但部署FPGA所付出的成本也要比ASIC更高。
2018-05-04 15:39:03251869 所谓的AI芯片,一般是指针对AI算法的ASIC(专用芯片)。传统的CPU、GPU都可以拿来执行AI算法,但是速度慢,性能低,无法实际商用。
2018-07-25 14:58:5133472 所谓的AI芯片,一般是指针对AI算法的ASIC(专用芯片)。传统的CPU、GPU都可以拿来执行AI算法,但是速度慢,性能低,无法实际商用。
2018-08-01 10:34:5710550 着眼未来,自动驾驶也将逐步完善,届时又会加入激光雷达的点云(三维位置数据)数据以及更多的摄像头和雷达传感器,GPU也难以胜任,ASIC性能、能耗和大规模量产成本均显著优于GPU和FPGA,定制
2018-08-09 11:11:4222663 有人认为,除了人才短缺、开发难度较大,相比未来的批量化量产的ASIC芯片,FPGA在成本、性能、功耗方面仍有很多不足。这是否意味着,在ASIC大爆发之际,FPGA将沦为其“过渡”品的命运?
2018-08-29 17:46:00936 很多读者可能分不清楚 CPU、GPU 和 TPU 之间的区别,因此 Google Cloud 将在这篇博客中简要介绍它们之间的区别,并讨论为什么 TPU 能加速深度学习。
2018-09-06 16:53:4627950 张量处理单元(TPU)是一种定制化的 ASIC 芯片,它由谷歌从头设计,并专门用于机器学习工作负载。TPU 为谷歌的主要产品提供了计算支持,包括翻译、照片、搜索助理和 Gmail 等。
在本文中,我们将关注 TPU 某些特定的属性。
2018-09-15 10:46:3643744 带宽模型最大的限制就是这些计算是针对特定矩阵大小的,计算的难度在各种尺寸之间都不同。例如,如果你的batch size是128,那么GPU的速度会比TPU稍快一点。如果batch size小于128
2018-10-21 09:20:343997 目前以深度学习为代表的人工智能计算需求,主要采用 GPU、FPGA 等已有的适合并行计算的通用芯片来实现加速。在产业应用没有大规模兴起之时,使用这类已有的通用芯片可以避免专门研发定制芯片(ASIC
2018-12-03 11:14:366793 人工智能芯片按照架构类别分为GPU、FPGA、ASIC和类脑芯片,这在大部分的文章都提到了就不赘述了。
2019-01-03 09:38:242785 芯片是整个医疗AI发展的核心环节,为医疗服务系统升级提供算力的支撑,现在深度学习较有代表性的主流加速方案有GPU、FPGA、ASIC、TPU等芯片。根据IDC白皮书提供的信息,受性能、成本等因素影响,GPU在医疗AI领域更受认可。
2019-01-17 10:51:164059 当前主流的AI芯片主要分为三类,GPU、FPGA、ASIC。其中GPU、FPGA均是前期较为成熟的芯片架构,属于通用型芯片。ASIC属于为AI特定场景定制的芯片。
2019-03-07 14:39:2129058 TPU(Tensor Processing Unit, 张量处理器)是类似于CPU或GPU的一种处理器。不过,它们之间存在很大的差异。最大的区别是TPU是ASIC,即专用集成电路。ASIC经过优化
2019-03-21 09:09:4722764 在AI芯片领域,前有英伟达GPU独领风骚,后有谷歌对外开放TPU,赛灵思CEO Victor则认为FPGA芯片将是重头戏。
2019-08-21 15:10:27474 人工智能的三大支撑是硬件、算法和数据,其中硬件指的是运行 AI 算法的芯片与相对应的计算平台。在硬件方面,目前主要是使用 GPU 并行计算神经网络,同时,还有 FPGA 和 ASIC 也具有未来异军突起的潜能。
2019-08-21 17:48:555236 人工智能的三大支撑是硬件、算法和数据,其中硬件指的是运行 AI 算法的芯片与相对应的计算平台。在硬件方面,目前主要是使用 GPU 并行计算神经网络,同时,还有 FPGA 和 ASIC 也具有未来异军突起的潜能。
2019-09-03 17:55:232421 从技术方面来看,AI芯片的典型代表包括GPU、FPGA和ASIC三种。不过,GPU并未专门针对安防监控需求进行优化,处理大量视频数据时功耗高,FPGA和ASIC在效能方面有更好的表现。
2019-09-12 15:37:581031 在AI芯片领域,前有英伟达GPU独领风骚,后有谷歌对外开放TPU,赛灵思CEO Victor则认为FPGA芯片将是重头戏。
2019-11-22 15:37:23517 新一轮的AI热潮对芯片提出了更高要求,不过,AI芯片的定义还没有严格和公认的标准。因此,可以运行深度学习算法的CPU、GPU以及FPGA和ASIC都可以被称为AI芯片。虽然都称为AI芯片,但在2019年AI落地的大背景下,AI芯片的效率更值得关注。
2019-12-13 16:28:143454 所谓的AI芯片,一般是指针对AI算法的ASIC(专用芯片)。传统的CPU、GPU都可以拿来执行AI算法,但是速度慢,性能低,无法实际商用。
2019-12-21 10:11:388185 ,比如专用集成电路(ASIC)的张量处理单元 TPU、神经网络单元 NPU 以及半定制芯片 FPGA 等等。
2020-10-11 10:23:342306 这篇文章为大家介绍了一下面向低功耗AI芯片上的神经网络设计,随着这几年神经网络和硬件(CPU,GPU,FPGA,ASIC)的迅猛发展,深度学习在包...
2020-12-14 23:40:08536 CPU、GPU、TPU、NPU等的讲解
2021-01-05 14:54:179659 目前,智能驾驶领域在处理深度学习AI算法方面,主要采用GPU、FPGA 等适合并行计算的通用芯片来实现加速。同时有部分芯片企业开始设计专门用于AI算法的ASIC专用芯片,比如谷歌TPU、地平线BPU等。
2021-03-19 17:24:4621183 陌生,它一直都被广泛使用。但是,大部分人 还不是太了解它,对它有很多疑问——FPGA到底是什么?为什么要使用它?相比 CPU、GPU、ASIC(专用芯片),FPGA有什么特点?…… 今天,带着这一系列的问题,我们一起来——揭秘FPGA。 一、为什么使用 FPGA? 众所周知,
2022-11-22 14:35:101087 FPGA常年来被用作专用芯片(ASIC)的小批量替代品,然而近年来在微软、百度等公司的数据中心大规模部署,以同时提供强大的计算能力和足够的灵活性。
2023-01-04 13:53:351068 当前主流的AI芯片主要分为三类,GPU、FPGA、ASIC。GPU、FPGA均是前期较为成熟的芯片架构,属于通用型芯片。ASIC属于为AI特定场景定制的芯片。行业内已经确认CPU不适用于AI计算,但是在AI应用领域也是必不可少。
2023-03-17 11:05:301519 那FPGA有啥优势呢,这也要对比ASIC来说,因为ASIC芯片只是针对某一项功能做的专用芯片,如果要完成其他的功能就还得做一个另外的专用ASIC芯片,这样就大大的增加时间成本和人力成本,因为一个芯片的生产周期较长而且验证也是相当复杂的。FPGA就是为了解决上面的问题而出现的。
2023-03-21 11:06:201175 目前,智能驾驶领域在处理深度学习AI算法方面, **主要采用GPU、FPGA 等适合并行计算的通用芯片来实现加速** 。同时有部分芯片企业开始设计专门用于AI算法的ASIC专用芯片,比如谷歌TPU
2023-03-21 14:42:082254 头部厂商纷纷切入AI ASIC领域,技术路径不同。本文内容来自“GPT-5后NLP大模型逐步走向收敛,ASIC将大有可为”,详细介绍谷歌——全球AI ASIC先驱,TPU产品持续迭代,以及英特尔——收购Habana Lab,Gaudi 2性能表现出色。
2023-05-15 15:02:392467 和话语权的决定性因素之一 。 FPGA在安防应用中独具优势 从技术方面来看, AI芯片的典型代表包括GPU、FPGA和ASIC三种 。不过,GPU并未专门针对安防监控需求进行优化,处理大量视频数据时功耗高,FPGA和ASIC在效能方面有更好的表现。尽管ASIC在性能
2023-06-17 17:30:02644 值得一提的是,近年来涌现的TPU、NPU、VPU、BPU等令人眼花缭乱的芯片均属于ASIC。不同于GPU和FPGA的灵活性,ASIC是定制化的,一经制造完成便不能更改,因此其开发成本高昂且周期长
2023-06-28 15:28:28363 AI芯片也被称为AI加速器或计算卡,即专门用于处理人工智能应用中的大量计算任务的模块(其他非计算任务仍由CPU负责)。当前,AI芯片主要分为 GPU 、FPGA 、ASIC。
2023-08-03 17:19:111816 AI芯片也被称为AI加速器或计算卡,即专门用于处理人工智能应用中的大量计算任务的模块(其他非计算任务仍由CPU负责)。当前,AI芯片主要分为 GPU 、FPGA 、ASIC。
2023-08-06 16:18:49857 ai芯片和gpu芯片有什么区别? AI芯片和GPU芯片是当今比较流行的芯片类型,它们都是为了更好地处理数据而设计的。虽然它们都在处理数据方面有类似之处,但在设计和使用方面还是有很大的区别。 首先
2023-08-08 18:02:283616 FPGA和ASIC是数字电路中常见的实现方式,因此人们经常会想要了解哪种芯片在未来的发展中更具有前途。然而,这取决于具体的应用场景和需求。在本文中,我们将探讨FPGA和ASIC的优劣势,并分析哪种芯片在特定的应用场景中更具有优势。
2023-08-14 16:40:201029 TPU和NPU的区别 在IT领域中,TPU和NPU属于两种不同类型的芯片。这两种芯片都是专为人工智能(AI)和大型数据分析设计而开发的,但它们的功能和优点却有所不同。在本文中,我们将详细介绍TPU
2023-08-27 17:08:292976 从一种架构转移到FPGA——这几乎是这个领域的一个强制性步骤——然后转移到生产ASIC是一个不平凡的旅程。但是如果你提前计划,这不一定是一次冒险。
2023-11-23 10:36:51179 在晶圆测试领域,京元电在gpu芯片测试领域的市场占有率较高,成为美国ai芯片工厂的主要测试伙伴,最快将从明年开始在ai asic芯片测试领域逐渐扩大规模。在京元电整体业绩中,ai芯片所占的比重预计到2023年和明年将分别提高到78%和10%。
2023-12-07 16:44:27509 CPU、GPU遵循的是冯·诺依曼体系结构,指令要经过存储、译码、执行等步骤,共享内存在使用时,要经历仲裁和缓存。 而FPGA和ASIC并不是冯·诺依曼架构(是哈佛架构)。以FPGA为例,它本质上是无指令、无需共享内存的体系结构。
2024-01-06 11:20:07452 一、CPU/GPU/FPGA/ASIC芯片CPU/GPU/FPGA/ASIC芯片是智能汽车的“大脑”。GPU、FPGA、ASIC在自动驾驶AI运算领域各有所长。传统意义上的CPU通常为芯片
2024-02-20 16:44:52652 Groq推出了大模型推理芯片,以每秒500tokens的速度引起轰动,超越了传统GPU和谷歌TPU。
2024-02-26 10:24:46289
评论
查看更多