资料介绍
This book is intended for the graduate or advanced undergraduate
engineer. The primary motivation for developing the text was to present a
complete tutorial of phase-locked loops with a consistent notation. I believe
this is critical for the practicing engineer who uses the text as a self-study
guide.
Three years after the first printing, I discovered there was a need for a
second edition. I had taught several short courses from the text, and
discovered that today’s engineers needed less time devoted to discrete-time
theory, but wanted more practical information on implementing phase-locked
loops. As a result, I have deleted discussions on topics such as multi-rate
sampling and the Jury test, and replaced them with new content. Included in
the new material are additional loop filters and reduction of reference feedthrough in frequency synthesizers. Indeed, frequency synthesis is itself a
new topic in the text.
Since most hardware phase-locked loops utilize charge pumps, I
developed a new chapter that spotlights charge pumps and its complementary
sequential phase detector. Several students in the short courses were asking
for design examples on delay-locked loops used to synchronize circuits on
CPUs and ASICS. The second printing includes new material for this very
purpose.
Another change was the increased use of Many of the original graphics have been replaced with graphics generated by MATLAB’s or Control System Toolbox. Since MATLAB has emerged as the leading simulation tool for the communications engineer, the graphics should be familiar and provide more information such as gain and phase margins. I have also taken the opportunity to correct typographical errors
and further improve the consistency in notation.
New material has been added on digital dividers. These devices can
easily dominate a frequency synthesizer’s noise floor, but the literature has
not provided many solutions. In this second edition, I added sections
discussing the origin of phase noise in digital dividers and possible solutions.
Also included are some techniques to analytically estimate the phase noise of
a divider before it is even fabricated.
In the past year, many students in the short courses have been asking for
design help on optical phase-locked loops. A new chapter has been added on
this topic. Because many designers will be new to optical communications, I
have included short sections discussing components such as lasers and
photodetectors. Since coherent phase-locked loops are so very difficult to
implement, I have included a section on automatic frequency control to
provide frequency-locking of the lasers instead of phase-locking.
This second edition begins with the early history of phase-locked loops. I
believe that historical knowledge can provide insight to the development and
progress of a field, and phase-locked loops are no exception. Although allanalog
phase-locked loops are becoming atypical, the continuous-time nature
of analog loops allows an easy introduction to phase-locked loop theory.
This foundation then allows us to proceed to the many implementations and
discussions of phase-locked loops.
I wish to thank the readers of the first edition for their many suggestions
and comments. Likewise the short course students have also strengthened
this new edition with their participation and comments. I have tried to
incorporate these suggestions within the intended scope of the text.
engineer. The primary motivation for developing the text was to present a
complete tutorial of phase-locked loops with a consistent notation. I believe
this is critical for the practicing engineer who uses the text as a self-study
guide.
Three years after the first printing, I discovered there was a need for a
second edition. I had taught several short courses from the text, and
discovered that today’s engineers needed less time devoted to discrete-time
theory, but wanted more practical information on implementing phase-locked
loops. As a result, I have deleted discussions on topics such as multi-rate
sampling and the Jury test, and replaced them with new content. Included in
the new material are additional loop filters and reduction of reference feedthrough in frequency synthesizers. Indeed, frequency synthesis is itself a
new topic in the text.
Since most hardware phase-locked loops utilize charge pumps, I
developed a new chapter that spotlights charge pumps and its complementary
sequential phase detector. Several students in the short courses were asking
for design examples on delay-locked loops used to synchronize circuits on
CPUs and ASICS. The second printing includes new material for this very
purpose.
Another change was the increased use of Many of the original graphics have been replaced with graphics generated by MATLAB’s or Control System Toolbox. Since MATLAB has emerged as the leading simulation tool for the communications engineer, the graphics should be familiar and provide more information such as gain and phase margins. I have also taken the opportunity to correct typographical errors
and further improve the consistency in notation.
New material has been added on digital dividers. These devices can
easily dominate a frequency synthesizer’s noise floor, but the literature has
not provided many solutions. In this second edition, I added sections
discussing the origin of phase noise in digital dividers and possible solutions.
Also included are some techniques to analytically estimate the phase noise of
a divider before it is even fabricated.
In the past year, many students in the short courses have been asking for
design help on optical phase-locked loops. A new chapter has been added on
this topic. Because many designers will be new to optical communications, I
have included short sections discussing components such as lasers and
photodetectors. Since coherent phase-locked loops are so very difficult to
implement, I have included a section on automatic frequency control to
provide frequency-locking of the lasers instead of phase-locking.
This second edition begins with the early history of phase-locked loops. I
believe that historical knowledge can provide insight to the development and
progress of a field, and phase-locked loops are no exception. Although allanalog
phase-locked loops are becoming atypical, the continuous-time nature
of analog loops allows an easy introduction to phase-locked loop theory.
This foundation then allows us to proceed to the many implementations and
discussions of phase-locked loops.
I wish to thank the readers of the first edition for their many suggestions
and comments. Likewise the short course students have also strengthened
this new edition with their participation and comments. I have tried to
incorporate these suggestions within the intended scope of the text.
下载该资料的人也在下载
下载该资料的人还在阅读
更多 >
- 锁相环常见问题解答
- 锁相环CD4046原理及应用 62次下载
- 基于FPGA的宽频带数字锁相环的设计与实现简介 26次下载
- 基于DSP的软件锁相环模型与实现 33次下载
- 如何使用FPGA实现高性能全数字锁相环的设计 65次下载
- 如何使用FPGA实现高性能全数字锁相环的设计 18次下载
- 使用MC145170锁相环实现调频锁相环收音机的PCB原理图免费下载 77次下载
- 使用FPGA实现数字锁相环的设计资料说明 24次下载
- 详解FPGA数字锁相环平台 18次下载
- 锁相环电路 63次下载
- 扩频通信的数字锁相环设计 122次下载
- 锁相环设计举例
- 锁相环电路的设计 0次下载
- 模拟锁相环应用实验
- 软件锁相环的设计与应用
- 简述锁相环的基本结构 246次阅读
- 倍频器与锁相环的区别 574次阅读
- 锁相环的基本原理和主要作用 2259次阅读
- 锁相环性能度量标准解读 960次阅读
- 锁相环的构成和工作原理讲解 2881次阅读
- 锁相环电路设计的解决方案 锁相环的基本构成和主要应用 1096次阅读
- 锁相环原理与公式讲解 8291次阅读
- 使用MAX9382的锁相环应用 953次阅读
- 锁相环PLL的基础知识 4644次阅读
- Delta-Sigma小数锁相环的逻辑及特性 7730次阅读
- 关于2.4 GHz的低噪声亚采样锁相环设计 9568次阅读
- 锁相环在调制和解调中的应用及概念解析 1.4w次阅读
- 锁相环的作用是什么_锁相环的主要作用_什么是锁相环 3.5w次阅读
- PLL锁相环的特性、应用与其基本工作过程 9608次阅读
- 锁相环的电源管理设计 3863次阅读
下载排行
本周
- 1电子电路原理第七版PDF电子教材免费下载
- 0.00 MB | 1489次下载 | 免费
- 2单片机典型实例介绍
- 18.19 MB | 91次下载 | 1 积分
- 3S7-200PLC编程实例详细资料
- 1.17 MB | 27次下载 | 1 积分
- 4笔记本电脑主板的元件识别和讲解说明
- 4.28 MB | 18次下载 | 4 积分
- 5开关电源原理及各功能电路详解
- 0.38 MB | 9次下载 | 免费
- 6基于AT89C2051/4051单片机编程器的实验
- 0.11 MB | 4次下载 | 免费
- 7基于单片机和 SG3525的程控开关电源设计
- 0.23 MB | 3次下载 | 免费
- 8基于单片机的红外风扇遥控
- 0.23 MB | 3次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 2PADS 9.0 2009最新版 -下载
- 0.00 MB | 66304次下载 | 免费
- 3protel99下载protel99软件下载(中文版)
- 0.00 MB | 51209次下载 | 免费
- 4LabView 8.0 专业版下载 (3CD完整版)
- 0.00 MB | 51043次下载 | 免费
- 5555集成电路应用800例(新编版)
- 0.00 MB | 33562次下载 | 免费
- 6接口电路图大全
- 未知 | 30319次下载 | 免费
- 7Multisim 10下载Multisim 10 中文版
- 0.00 MB | 28588次下载 | 免费
- 8开关电源设计实例指南
- 未知 | 21539次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935053次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537791次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420026次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233045次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191183次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183277次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138039次下载 | 免费
评论
查看更多