资料介绍
1、数字助听器开拓是必然的技术支持
助听器的设计具有严格的技术要求。助听器必须足够小的体积(以便置于人耳之中或其后部)、极低的运行功耗且不得引入噪声或失真。为满足这些要求,现有的助听器件消耗的电流低于1mA,工作电压为1V,并占用不到 的硅片面积(通常这意味着两个或三个元件需要彼此堆叠放置)。
典型的模拟助听器由具有非线性输入/输出功能以及频率相关增益的放大器所组成。但是,与数字处理相比,这种模拟处理的缺点在于其依赖定制电路、不具备可编程性且成本较高。相比于同类模拟器件,近来的数字器件已经在器件成本和功耗方面有所改进。数字器件具有的最大优点是其处理功率和可编程性的改善,它使得设计能够针对特定的听力受损情况和环境对助听器进行客户化设计。可以采用较为复杂的处理方法(而非简单的声音放大和可调频率补偿)来使传送到受损人耳的声音质量有所改善。但是,这种方案的实现需要仰仗DSP所具有的复杂处理能力。
2、 听力损失的分类与解决
听力损失通常可分为两类:即传导型听力损失和感觉神经型听力损失(SNHL)。当通过患者外耳或中耳的声音传送异常时会发生传导型听力损失,而SNHL则发生在耳蜗中的感觉细胞或听觉系统中更高级的神经机理出现故障的场合。
2.1 传导型听力损失的解决-声音进行放大
传导型听力损失当发生传导型听力损失时,声音不能通过中耳或外耳的进行正确的传导。由于声音衰减主要是因传导损失所致,因此对声音进行放大是恢复接近正常听力所必不可少的。传统的模拟助听器无需特殊的信号处理就能发挥很好的作用。但是,在那些具有某种程度的听力障碍的患者中,只有5%是纯粹由传导型听力损失所造成的。
2.2 感觉神经型听力损失(SNHL) 的解决
SNHL包括因器官老化而引起的听力损失、噪声引发的听力损失以及由损害听力系统的药物所导致的听力损失。多数类型的SNHL似乎是由耳蜗功能失效引起的。SNHL被认为是由于内耳绒毛细胞和/或外耳绒毛细胞受损引起的。但是潜在的生理学病因是复杂的,不同的人将表现出不同的病状,这意味着听力图相同的患者其听力损失情况未必相同。而且,在不同的频率范围内,患者听力受损的情形甚至也有可能存在差异。
SNHL的影响通常会导致某些频率范围内的输入信号缺损、灵敏度严重不足以及听觉滤波器滤波范围变大等问题。这些影响反过来又会大大影响患者对声音的感觉。与听力正常的人相比,SNHL患者最有可能遇到的问题就是需要加大音量(即患者的舒适聆听电平范围与正常值相比受到压缩)以及频率分辨率降低。声音感觉方面的这些改变会显著影响听者对语音的理解能力。
由于SNHL不仅仅是声音传输的问题,而实际上是声音处理的问题,因此这种损失不大可能通过简单的放大来弥补-把失真的声音放大并不会使其变得更加清晰。所以,帮助SNHL患者的一种有效途径或许是通过信号的预处理来对合成音调频谱进行改善的方法来补偿听力损失。
不同表现形式的SNHL不大可能采用一种相同的最佳处理方法来补救。对声音进行处理能够使语音变得更加清晰。但是,最佳处理算法会因人而异,而且,即使是同一个人,由于所处聆听环境(比如既有安静的房间也有噪杂的运动场)的不同,处理算法甚至也有可能改变。要想适应这些差异,关键在于助听器的灵活性。
2.3 传统助听器组成及功能 传统助听器一直采用的是装在与最终用户相配的定制耳模内的放大器。助听器系统包括传声器、放大器、锌-空气电池和接收器/扬声器。大多数此类放大器均采用了某种用于对增大的音量进行补偿的压缩函数(基本上是非线性输入/输出关系)。此外,不同频段中的增益是可以调节的,且频段的数量各不相同,但通常为两个或三个。很多最新型的助听器具有数字可编程性,这意味着尽管它们采用模拟信号处理,但其处理则受控于可由听觉病矫治专家进行调节的数字参数。此外,一些模拟助听器具有几套“程序”(即几组参数),以适应不同的聆听环境。
3、基于DSP的数字助听器
3.1 先述用ASIC(专用集成电路)制作的数字助听器
市面上的一些数字助听器是具有可编程系数的ASIC。这些ASIC能够提供典型模拟器件所无法提供的几套算法和多个频段。例如,数字助听器具有以下功能组合:2-14个具有可调交叉频率的频段、传声器、用于定向聆听的对偶传声器、背景噪声抑制、自动增益控制(AGC)、语音增强、反馈抑制和高响度保护。总之,数字助听器能够处理的数量是令人吃惊的,尤其在与模拟助听器所采用的传统处理相比较时更是如此。
助听器的设计具有严格的技术要求。助听器必须足够小的体积(以便置于人耳之中或其后部)、极低的运行功耗且不得引入噪声或失真。为满足这些要求,现有的助听器件消耗的电流低于1mA,工作电压为1V,并占用不到 的硅片面积(通常这意味着两个或三个元件需要彼此堆叠放置)。
典型的模拟助听器由具有非线性输入/输出功能以及频率相关增益的放大器所组成。但是,与数字处理相比,这种模拟处理的缺点在于其依赖定制电路、不具备可编程性且成本较高。相比于同类模拟器件,近来的数字器件已经在器件成本和功耗方面有所改进。数字器件具有的最大优点是其处理功率和可编程性的改善,它使得设计能够针对特定的听力受损情况和环境对助听器进行客户化设计。可以采用较为复杂的处理方法(而非简单的声音放大和可调频率补偿)来使传送到受损人耳的声音质量有所改善。但是,这种方案的实现需要仰仗DSP所具有的复杂处理能力。
2、 听力损失的分类与解决
听力损失通常可分为两类:即传导型听力损失和感觉神经型听力损失(SNHL)。当通过患者外耳或中耳的声音传送异常时会发生传导型听力损失,而SNHL则发生在耳蜗中的感觉细胞或听觉系统中更高级的神经机理出现故障的场合。
2.1 传导型听力损失的解决-声音进行放大
传导型听力损失当发生传导型听力损失时,声音不能通过中耳或外耳的进行正确的传导。由于声音衰减主要是因传导损失所致,因此对声音进行放大是恢复接近正常听力所必不可少的。传统的模拟助听器无需特殊的信号处理就能发挥很好的作用。但是,在那些具有某种程度的听力障碍的患者中,只有5%是纯粹由传导型听力损失所造成的。
2.2 感觉神经型听力损失(SNHL) 的解决
SNHL包括因器官老化而引起的听力损失、噪声引发的听力损失以及由损害听力系统的药物所导致的听力损失。多数类型的SNHL似乎是由耳蜗功能失效引起的。SNHL被认为是由于内耳绒毛细胞和/或外耳绒毛细胞受损引起的。但是潜在的生理学病因是复杂的,不同的人将表现出不同的病状,这意味着听力图相同的患者其听力损失情况未必相同。而且,在不同的频率范围内,患者听力受损的情形甚至也有可能存在差异。
SNHL的影响通常会导致某些频率范围内的输入信号缺损、灵敏度严重不足以及听觉滤波器滤波范围变大等问题。这些影响反过来又会大大影响患者对声音的感觉。与听力正常的人相比,SNHL患者最有可能遇到的问题就是需要加大音量(即患者的舒适聆听电平范围与正常值相比受到压缩)以及频率分辨率降低。声音感觉方面的这些改变会显著影响听者对语音的理解能力。
由于SNHL不仅仅是声音传输的问题,而实际上是声音处理的问题,因此这种损失不大可能通过简单的放大来弥补-把失真的声音放大并不会使其变得更加清晰。所以,帮助SNHL患者的一种有效途径或许是通过信号的预处理来对合成音调频谱进行改善的方法来补偿听力损失。
不同表现形式的SNHL不大可能采用一种相同的最佳处理方法来补救。对声音进行处理能够使语音变得更加清晰。但是,最佳处理算法会因人而异,而且,即使是同一个人,由于所处聆听环境(比如既有安静的房间也有噪杂的运动场)的不同,处理算法甚至也有可能改变。要想适应这些差异,关键在于助听器的灵活性。
2.3 传统助听器组成及功能 传统助听器一直采用的是装在与最终用户相配的定制耳模内的放大器。助听器系统包括传声器、放大器、锌-空气电池和接收器/扬声器。大多数此类放大器均采用了某种用于对增大的音量进行补偿的压缩函数(基本上是非线性输入/输出关系)。此外,不同频段中的增益是可以调节的,且频段的数量各不相同,但通常为两个或三个。很多最新型的助听器具有数字可编程性,这意味着尽管它们采用模拟信号处理,但其处理则受控于可由听觉病矫治专家进行调节的数字参数。此外,一些模拟助听器具有几套“程序”(即几组参数),以适应不同的聆听环境。
3、基于DSP的数字助听器
3.1 先述用ASIC(专用集成电路)制作的数字助听器
市面上的一些数字助听器是具有可编程系数的ASIC。这些ASIC能够提供典型模拟器件所无法提供的几套算法和多个频段。例如,数字助听器具有以下功能组合:2-14个具有可调交叉频率的频段、传声器、用于定向聆听的对偶传声器、背景噪声抑制、自动增益控制(AGC)、语音增强、反馈抑制和高响度保护。总之,数字助听器能够处理的数量是令人吃惊的,尤其在与模拟助听器所采用的传统处理相比较时更是如此。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
下载该资料的人也在下载
下载该资料的人还在阅读
更多 >
- 小信号放大电路设计方案汇总 142次下载
- AC380V EMC标准电路设计方案 51次下载
- CAN总线接口EMC标准电路设计方案 210次下载
- 基于NVM和DRAN的混合内存系统设计方案 12次下载
- 基于DSP的矢量控制系统的分析与实现 29次下载
- 基于DSP的整经机恒张力控制系统设计方案 11次下载
- 基于单片机和DSP的被动声目标探测平台设计方案资料下载
- 基于DSP技术模数兼容的多通道数字电话设计 11次下载
- 新型低功耗双耳可穿戴式数字助听器平台的研制的详细资料概述 6次下载
- 基于DSP的数字助听器开拓及与传统助听器的对比 5次下载
- 基于sa3291的无线DSP助听器系统设计 12次下载
- TI数字助听器设计考虑 18次下载
- 数字电路设计方案中DSP与FPGA的比较与选择 15次下载
- 美信(maxim)助听器解决方案(英文) 121次下载
- 模拟助听器与数字助听器的区别 244次下载
- 助听器电路图分享 助听器的工作原理和结构 2263次阅读
- 一个电子助听器电路图 6557次阅读
- 一种以DSP芯片为核心的通用型数字变频器系统设计方案概述 2772次阅读
- Ameya360助听器解决方案概述 5128次阅读
- 先进DSP技术在助听器中的应用 4654次阅读
- 基于FPGA+DSP的跳频电台传输系统的设计方案分析 2466次阅读
- 使用FPGA构建的数字滤波器设计方案 8879次阅读
- 基于FPGA的数字核脉冲分析器硬件设计方案 2186次阅读
- 基于SVPWM算法的变频调速系统设计方案 5144次阅读
- 基于DSP的自适应滤波器的设计方案 8742次阅读
- 基于S12的简易数字示波器的设计方案 3090次阅读
- 基于DSP的双通道数字存储示波器 3694次阅读
- 基于DSP的恒流充电电源设计方案 2898次阅读
- 基于DSP的覆冰机器人控制系统研究 645次阅读
- 基于TMS320VC5416DSP的数字助听器设计 4264次阅读
下载排行
本周
- 1DC电源插座图纸
- 0.67 MB | 2次下载 | 免费
- 2AN158 GD32VW553 Wi-Fi开发指南
- 1.51MB | 2次下载 | 免费
- 3AN148 GD32VW553射频硬件开发指南
- 2.07MB | 1次下载 | 免费
- 4AN111-LTC3219用户指南
- 84.32KB | 次下载 | 免费
- 5AN153-用于电源系统管理的Linduino
- 1.38MB | 次下载 | 免费
- 6AN-283: Σ-Δ型ADC和DAC[中文版]
- 677.86KB | 次下载 | 免费
- 7SM2018E 支持可控硅调光线性恒流控制芯片
- 402.24 KB | 次下载 | 免费
- 8AN-1308: 电流检测放大器共模阶跃响应
- 545.42KB | 次下载 | 免费
本月
- 1ADI高性能电源管理解决方案
- 2.43 MB | 450次下载 | 免费
- 2免费开源CC3D飞控资料(电路图&PCB源文件、BOM、
- 5.67 MB | 138次下载 | 1 积分
- 3基于STM32单片机智能手环心率计步器体温显示设计
- 0.10 MB | 130次下载 | 免费
- 4使用单片机实现七人表决器的程序和仿真资料免费下载
- 2.96 MB | 44次下载 | 免费
- 53314A函数发生器维修手册
- 16.30 MB | 31次下载 | 免费
- 6美的电磁炉维修手册大全
- 1.56 MB | 24次下载 | 5 积分
- 7如何正确测试电源的纹波
- 0.36 MB | 17次下载 | 免费
- 8感应笔电路图
- 0.06 MB | 10次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935121次下载 | 10 积分
- 2开源硬件-PMP21529.1-4 开关降压/升压双向直流/直流转换器 PCB layout 设计
- 1.48MB | 420062次下载 | 10 积分
- 3Altium DXP2002下载入口
- 未知 | 233088次下载 | 10 积分
- 4电路仿真软件multisim 10.0免费下载
- 340992 | 191367次下载 | 10 积分
- 5十天学会AVR单片机与C语言视频教程 下载
- 158M | 183335次下载 | 10 积分
- 6labview8.5下载
- 未知 | 81581次下载 | 10 积分
- 7Keil工具MDK-Arm免费下载
- 0.02 MB | 73810次下载 | 10 积分
- 8LabVIEW 8.6下载
- 未知 | 65988次下载 | 10 积分
评论