资料介绍
摘要:高速中频采样信号处理平台在实际应用中有很大的前景,提出采用FPGA+DSP的处理结构,结合高性能A/D和D/A处理芯片,设计了一个通用处理平台,并对其主要性能进行了测试。实验与实际应用表明,该系统具有很强的数据处理能力和很好的稳定性。
关键词:高速中频;信号处理;FPGA;DSP
0 引言
现代社会正向数字化、信息化方向高速发展,在这一过程中,往往需要高速信号的实时性数字化处理。例如,随着科技的进步,现代雷达等应用信号的数字化处理上有了长足的发展,但也带来了新的问题,这些应用的数字信号处理具有海量运行需求的应用背景,如巡航导弹末制导雷达地形匹配、合成孔径雷达的成像处理、相控阵雷达的时空二维滤波处理等领域。目前,单片DSP难以胜任许多信号处理系统的要求。而常见的解决方案也是高速A/D采样与信号处理功能是在多块不同的板卡上实现,这给实际应用带来很多不便。
鉴于上述现有技术所存在的问题,本设计平台的目的是:
(1)实现高速中频信号(如雷达信号)的数字化处理并进行实时传输数据或进行数据的实时计算,并能通过输出电路进行结果显示;
(2)自定义控制总线可以实现对高速中频信号处理板进行灵活控制,具有较强的可配置性和丰富的灵活性;
(3)高速A/D采样与D/A回放及数据处理单元集成在一块板上,在集成度高的同时也降低了高速信号在传输过程中出现差错的概率。
1 平台设计方案
高速中频采样信号处理平台由主控制电路、高速A/D与D/A电路、信号处理单元电路、光纤通道电路、时钟管理电路、存储单元和外部接口电路组成,其总体框图如图1所示。
在实际应用过程中,四路A/D通道可以接收不同的信号源的信号,D/A通路可以对外进行数据显示等多种功能,时钟管理电路管理内外时钟的使用及对板上系统供给工作时钟,两路光纤通道可以与其他高速设备相连接,自定义总线可以与CPU或主控制器相连接对平台进行有效灵活的控制。
1.1 高速A/D与D/A设计
四路高速A/D采样通道采用两片NS公司的ADC081000实现,每片有两个A/D通道,相比多片A/D器件的通道间相位恒定设计是一个难点而言,单片A/D器件可以更容易实现两路通道间的相位恒定。ADC081000是一款高性能的A/D采集芯片,单通道8 b采样频率为1 GHz。本平台中A/D通道间采样数据的相位恒定是利用采样时钟相位间的恒定来实现的。在设计时,使时钟芯片到两片A/D器件间的时钟线等长,两片A /D器件到FPGA间的时钟线与数据线也分别等长,并且还利用一片FPGA设计了对两片A/D器件的软启动控制,这就更保证了四路通道间采样时钟的相位恒定。
两路高速D/A通道采用两片AD公司的AD9736实现,AD9736单通道14 b,采样频率可达1 200 MSPS。两路高速D/A通路也利用一片FPGA作控制,实现通道间相位差的恒定。
1.2 信号处理单元设计
信号处理单元包括FPGA和DSP两大部分。
FPGA部分主要由四片Virtex-4 SX55组成,四片FPGA间实现有串行连接和相隔间的连接。FPGA电路主要是实现对高速A/D采集数据的预处理和高速D/A回放数据处理,并且控制高速A/D电路采样时钟的相位恒定与高速D/A电路采样时钟的相位恒定,同时也根据需要与相应的DSP进行数据交换或传递。FPGA电路上连接的光接口电路也可以实现与其他系统进行高速、实时的数据交换。
A/D采样之后的数字信号速率非常高,要从这些高速信号中得到有用的基带信号,需要有效地对其进行数字下变频、抽取、滤波等处理,这些功能都可以通过FPGA来实现。FPGA具有较高的处理速度和较高的稳定性,同时又具有设计灵活、易于修改和维护的优点,可以适应不同系统的要求,提高了系统的适用性及可扩展性。
DSP电路是本平台信号处理的核心,完成大部分的数据处理工作,由四片ADSP TS201组成,四片DSP间实现了两两间的Link口互连,构成了分布式并行系统,可以把复杂的算法分割成小的任务给各处理器完成,从而减少任务的执行时间。
根据设计需要,平台数据的传输量很大,多DSP之间的数据传输速度尤为重要,采用Link口来传输数据,可以在不增加辅助电路的前提下,DSP间的直接互联。而且,基于Link口的数据传输采用专门的数据通道,不占有系统总线资源,消除了传输过程中的总线仲裁,减少了网络延迟带来的不确定因素。四片DSP间Link口的传递数据能力高达600 MB/s。
DSP主要是通过软件设计来实现数字基带信号处理以及比特流控制、编码解码等高速的数据交换和处理功能。对DSP开发的软件工具是ADI公司的VisualDSF++4.0,它是TigerSHARC系列DSP的集成开发环境,支持汇编语言、C语言、C++等开发语言,能让程序员使用这些工具编写出相对于特定DSP的高性能应用程序,发挥强大的处理能力。在本平台中,每片DSP的地位都是对等的,能够根据不同的要求,硬件结构不用改变,只须在DSP的软件算法中稍加改动,系统就能实现新的功能。
关键词:高速中频;信号处理;FPGA;DSP
0 引言
现代社会正向数字化、信息化方向高速发展,在这一过程中,往往需要高速信号的实时性数字化处理。例如,随着科技的进步,现代雷达等应用信号的数字化处理上有了长足的发展,但也带来了新的问题,这些应用的数字信号处理具有海量运行需求的应用背景,如巡航导弹末制导雷达地形匹配、合成孔径雷达的成像处理、相控阵雷达的时空二维滤波处理等领域。目前,单片DSP难以胜任许多信号处理系统的要求。而常见的解决方案也是高速A/D采样与信号处理功能是在多块不同的板卡上实现,这给实际应用带来很多不便。
鉴于上述现有技术所存在的问题,本设计平台的目的是:
(1)实现高速中频信号(如雷达信号)的数字化处理并进行实时传输数据或进行数据的实时计算,并能通过输出电路进行结果显示;
(2)自定义控制总线可以实现对高速中频信号处理板进行灵活控制,具有较强的可配置性和丰富的灵活性;
(3)高速A/D采样与D/A回放及数据处理单元集成在一块板上,在集成度高的同时也降低了高速信号在传输过程中出现差错的概率。
1 平台设计方案
高速中频采样信号处理平台由主控制电路、高速A/D与D/A电路、信号处理单元电路、光纤通道电路、时钟管理电路、存储单元和外部接口电路组成,其总体框图如图1所示。
在实际应用过程中,四路A/D通道可以接收不同的信号源的信号,D/A通路可以对外进行数据显示等多种功能,时钟管理电路管理内外时钟的使用及对板上系统供给工作时钟,两路光纤通道可以与其他高速设备相连接,自定义总线可以与CPU或主控制器相连接对平台进行有效灵活的控制。
1.1 高速A/D与D/A设计
四路高速A/D采样通道采用两片NS公司的ADC081000实现,每片有两个A/D通道,相比多片A/D器件的通道间相位恒定设计是一个难点而言,单片A/D器件可以更容易实现两路通道间的相位恒定。ADC081000是一款高性能的A/D采集芯片,单通道8 b采样频率为1 GHz。本平台中A/D通道间采样数据的相位恒定是利用采样时钟相位间的恒定来实现的。在设计时,使时钟芯片到两片A/D器件间的时钟线等长,两片A /D器件到FPGA间的时钟线与数据线也分别等长,并且还利用一片FPGA设计了对两片A/D器件的软启动控制,这就更保证了四路通道间采样时钟的相位恒定。
两路高速D/A通道采用两片AD公司的AD9736实现,AD9736单通道14 b,采样频率可达1 200 MSPS。两路高速D/A通路也利用一片FPGA作控制,实现通道间相位差的恒定。
1.2 信号处理单元设计
信号处理单元包括FPGA和DSP两大部分。
FPGA部分主要由四片Virtex-4 SX55组成,四片FPGA间实现有串行连接和相隔间的连接。FPGA电路主要是实现对高速A/D采集数据的预处理和高速D/A回放数据处理,并且控制高速A/D电路采样时钟的相位恒定与高速D/A电路采样时钟的相位恒定,同时也根据需要与相应的DSP进行数据交换或传递。FPGA电路上连接的光接口电路也可以实现与其他系统进行高速、实时的数据交换。
A/D采样之后的数字信号速率非常高,要从这些高速信号中得到有用的基带信号,需要有效地对其进行数字下变频、抽取、滤波等处理,这些功能都可以通过FPGA来实现。FPGA具有较高的处理速度和较高的稳定性,同时又具有设计灵活、易于修改和维护的优点,可以适应不同系统的要求,提高了系统的适用性及可扩展性。
DSP电路是本平台信号处理的核心,完成大部分的数据处理工作,由四片ADSP TS201组成,四片DSP间实现了两两间的Link口互连,构成了分布式并行系统,可以把复杂的算法分割成小的任务给各处理器完成,从而减少任务的执行时间。
根据设计需要,平台数据的传输量很大,多DSP之间的数据传输速度尤为重要,采用Link口来传输数据,可以在不增加辅助电路的前提下,DSP间的直接互联。而且,基于Link口的数据传输采用专门的数据通道,不占有系统总线资源,消除了传输过程中的总线仲裁,减少了网络延迟带来的不确定因素。四片DSP间Link口的传递数据能力高达600 MB/s。
DSP主要是通过软件设计来实现数字基带信号处理以及比特流控制、编码解码等高速的数据交换和处理功能。对DSP开发的软件工具是ADI公司的VisualDSF++4.0,它是TigerSHARC系列DSP的集成开发环境,支持汇编语言、C语言、C++等开发语言,能让程序员使用这些工具编写出相对于特定DSP的高性能应用程序,发挥强大的处理能力。在本平台中,每片DSP的地位都是对等的,能够根据不同的要求,硬件结构不用改变,只须在DSP的软件算法中稍加改动,系统就能实现新的功能。
下载该资料的人也在下载
下载该资料的人还在阅读
更多 >
- 中频接收机硬件平台的设计方案
- 基于多相滤波的宽带中频正交采样数字零中频接收方案 3次下载
- 小信号放大电路设计方案汇总 139次下载
- 软件无线电信号中频与采样频率的选择方法 8次下载
- 数字信号处理虚拟试验仿真平台方案 5次下载
- 软件无线电中信号中频与采样频率选择 13次下载
- 基于多相滤波的正交采样零中频数字化接收及QPSK高速解调的FPGA实现 11次下载
- 一种WiMax双下变频IF采样接收机设计方案
- 使用DDC控制器设计中频无线电接收系统的方案说明 10次下载
- 基于matlab GUI的彩色图像处理技术设计方案资料下载 29次下载
- AD9516高速四通道时间交叉采样时钟设计方案分析 7次下载
- LFMCW雷达中频接收机的设计 65次下载
- 中频信号与伴音信号处理电路 0次下载
- 中频信号与伴音信号处理电路
- 中频采样多模式数字接收机的设计与实现
- 信号采样的算法原理是什么 276次阅读
- 基于FPGA的并行处理实现数字中频设计 1323次阅读
- 中频采样和IQ采样的比较分析 3155次阅读
- 基于软件无线电和接收信号处理器芯片AD6624实现基带滤波器的设计 3200次阅读
- 基于FPGA和高速ADC实现多通道通用信号处理平台的设计方案 2612次阅读
- 基于FPGA的并行处理实现数字中频的设计 3045次阅读
- 基于FPGA和NAND Flash的便携式高速信号采集系统的设计方案介绍 2538次阅读
- 高速信号PCB走线屏蔽设计方案 3184次阅读
- 基于嵌入式处理器PowerPC7447的设计方案 1128次阅读
- 过采样技术在通信信号处理中的应用 5320次阅读
- 结合FPGA与DSP实现对高速中频采样信号处理平台的设计详解 2182次阅读
- 基于PCI总线的微弱信号采集模块的设计方案 1753次阅读
- 基于软件无线电中频接收系统的设计方案 2833次阅读
- 基于FPGA的多普勒测振计信号采集与处理系统设计方案 2340次阅读
- DSP C54X窄带中频抽样的实现 1666次阅读
下载排行
本周
- 1电子电路原理第七版PDF电子教材免费下载
- 0.00 MB | 1489次下载 | 免费
- 2单片机典型实例介绍
- 18.19 MB | 91次下载 | 1 积分
- 3S7-200PLC编程实例详细资料
- 1.17 MB | 27次下载 | 1 积分
- 4笔记本电脑主板的元件识别和讲解说明
- 4.28 MB | 18次下载 | 4 积分
- 5开关电源原理及各功能电路详解
- 0.38 MB | 9次下载 | 免费
- 6基于AT89C2051/4051单片机编程器的实验
- 0.11 MB | 4次下载 | 免费
- 7基于单片机和 SG3525的程控开关电源设计
- 0.23 MB | 3次下载 | 免费
- 8基于单片机的红外风扇遥控
- 0.23 MB | 3次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 2PADS 9.0 2009最新版 -下载
- 0.00 MB | 66304次下载 | 免费
- 3protel99下载protel99软件下载(中文版)
- 0.00 MB | 51209次下载 | 免费
- 4LabView 8.0 专业版下载 (3CD完整版)
- 0.00 MB | 51043次下载 | 免费
- 5555集成电路应用800例(新编版)
- 0.00 MB | 33562次下载 | 免费
- 6接口电路图大全
- 未知 | 30319次下载 | 免费
- 7Multisim 10下载Multisim 10 中文版
- 0.00 MB | 28588次下载 | 免费
- 8开关电源设计实例指南
- 未知 | 21539次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935053次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537791次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420026次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233045次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191183次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183277次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138039次下载 | 免费
评论
查看更多