资料介绍
Progress in microelectronics over the last several decades has been intimately
linked to our ability to accurately measure, model, and predict the physical
properties of solid-state electronic devices. This ability is currently endangered
by the manufacturing and fundamental limitations of nanometer scale
technology, that result in increasing unpredictability in the physical properties
of semiconductor devices. Recent years have seen an explosion of interest
in Design for Manufacturability (DFM) and in statistical design techniques.
This interest is directly attributed to the difficulties of manufacturing of integrated circuits in nanometer scale CMOS technologies with high functional
and parametric yield.
The scaling of CMOS technologies brought about the increasing magnitude
of variability of key parameters affecting the performance of integrated
circuits. The large variation can be attributed to several factors. The first is
the rise of multiple systematic sources of parameter variability caused by the
interaction between the manufacturing process and the design attributes. For
example, optical proximity effects cause polysilicon feature sizes to vary depending on the local layout surroundings, while copper wire thickness strongly
depends on the local wire density because of chemical-mechanical polishing.
The second is that while technology scaling reduces the nominal values of
key process parameters, such as effective channel length, our ability to correspondingly improve manufacturing tolerances, such as mask fabrication errors
and mask overlay control, is limited. This results in an increase in the relative
amount of variations observed. The third, and most profound, reason for
the future increase in parametric variability is that technology is approaching
the regime of fundamental randomness in the behavior of silicon structures.
For example, the shrinking volume of silicon that forms the channel of the
MOS transistor will soon contain a small countable number of dopant atoms.
Because the placement of these dopant atoms is random, the final number of
atoms that end up in the channel of each transistor is a random variable. Thus,
the threshold voltage of the transistor, which is determined by the number
of dopant atoms, will also exhibit significant variation, eventually leading to
variation in circuit-level performances, such as delay and power.
linked to our ability to accurately measure, model, and predict the physical
properties of solid-state electronic devices. This ability is currently endangered
by the manufacturing and fundamental limitations of nanometer scale
technology, that result in increasing unpredictability in the physical properties
of semiconductor devices. Recent years have seen an explosion of interest
in Design for Manufacturability (DFM) and in statistical design techniques.
This interest is directly attributed to the difficulties of manufacturing of integrated circuits in nanometer scale CMOS technologies with high functional
and parametric yield.
The scaling of CMOS technologies brought about the increasing magnitude
of variability of key parameters affecting the performance of integrated
circuits. The large variation can be attributed to several factors. The first is
the rise of multiple systematic sources of parameter variability caused by the
interaction between the manufacturing process and the design attributes. For
example, optical proximity effects cause polysilicon feature sizes to vary depending on the local layout surroundings, while copper wire thickness strongly
depends on the local wire density because of chemical-mechanical polishing.
The second is that while technology scaling reduces the nominal values of
key process parameters, such as effective channel length, our ability to correspondingly improve manufacturing tolerances, such as mask fabrication errors
and mask overlay control, is limited. This results in an increase in the relative
amount of variations observed. The third, and most profound, reason for
the future increase in parametric variability is that technology is approaching
the regime of fundamental randomness in the behavior of silicon structures.
For example, the shrinking volume of silicon that forms the channel of the
MOS transistor will soon contain a small countable number of dopant atoms.
Because the placement of these dopant atoms is random, the final number of
atoms that end up in the channel of each transistor is a random variable. Thus,
the threshold voltage of the transistor, which is determined by the number
of dopant atoms, will also exhibit significant variation, eventually leading to
variation in circuit-level performances, such as delay and power.
下载该资料的人也在下载
下载该资料的人还在阅读
更多 >
- DC2274A-A - Design Files
- DC2143A-A - Design Files
- DC2155A-A - Design Files
- DC2348A-A - Design Files
- DC2681A-A - Design File
- DC2378A-A - Design Files
- DC2479A-A - Design Files
- DC2603A-A - Design Files
- DC2642A-A - Design Files
- DC2702A-A Design Files
- DC2681A-A - Design File
- Design and Layout of a Video G
- The Design of a Clock Synchron
- ALLEGRO DESIGN PUBLISHER 0次下载
- ALLEGRO DESIGN WORKBENCH 0次下载
- 如何在AMD Vivado™ Design Tool中用工程模式使用DFX流程? 497次阅读
- 电动汽车BMS PCB的重要性和制造过程 410次阅读
- PCB设计的可制造性和可组装性 870次阅读
- 如何将Qt Design Studio工程转换为Qt Creator工程 4677次阅读
- 如何在Qt Design Studio中创建连接和状态 2082次阅读
- 如何应用Material Design 3和Material You 4630次阅读
- Material Design指南中更新的相关内容 1858次阅读
- 用Elaborated Design优化RTL的代码 4974次阅读
- 图形界面介绍:GUI上的按键是Design Browser 3349次阅读
- 在贴片加工厂中有哪些安全防护需要了解 1306次阅读
- 复合放大器实现高精度的高输出驱动能力 获得最佳的性能 1600次阅读
- 用降压型稳压器或线性稳压器电源时值来会为负载供电 984次阅读
- 锂电池并联充电时保护板均衡原理 3w次阅读
- Vivado Design Suite 2017.1的五大方法介绍 4592次阅读
- Altium Design在word中的原理图出现错位现象解决方案 4633次阅读
下载排行
本周
- 1电子电路原理第七版PDF电子教材免费下载
- 0.00 MB | 1490次下载 | 免费
- 2单片机典型实例介绍
- 18.19 MB | 92次下载 | 1 积分
- 3S7-200PLC编程实例详细资料
- 1.17 MB | 27次下载 | 1 积分
- 4笔记本电脑主板的元件识别和讲解说明
- 4.28 MB | 18次下载 | 4 积分
- 5开关电源原理及各功能电路详解
- 0.38 MB | 10次下载 | 免费
- 6基于AT89C2051/4051单片机编程器的实验
- 0.11 MB | 4次下载 | 免费
- 7蓝牙设备在嵌入式领域的广泛应用
- 0.63 MB | 3次下载 | 免费
- 89天练会电子电路识图
- 5.91 MB | 3次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 2PADS 9.0 2009最新版 -下载
- 0.00 MB | 66304次下载 | 免费
- 3protel99下载protel99软件下载(中文版)
- 0.00 MB | 51209次下载 | 免费
- 4LabView 8.0 专业版下载 (3CD完整版)
- 0.00 MB | 51043次下载 | 免费
- 5555集成电路应用800例(新编版)
- 0.00 MB | 33562次下载 | 免费
- 6接口电路图大全
- 未知 | 30320次下载 | 免费
- 7Multisim 10下载Multisim 10 中文版
- 0.00 MB | 28588次下载 | 免费
- 8开关电源设计实例指南
- 未知 | 21539次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935053次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537791次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420026次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233045次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191183次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183277次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138039次下载 | 免费
评论
查看更多