资料介绍
Imagine that you are given the job of building a house for someone. Where
should you begin? Do you start by choosing doors and windows, picking out
paint and carpet colors, or selecting bathroom fixtures? Of course not! First
you must consider how the owners will use the space, and their budget, so you
can decide what type of house to build. Questions you should consider are; do
they enjoy cooking and want a high-end kitchen, or will they prefer watching
movies in the home theater room and eating takeout pizza? Do they want a
home office or extra bedrooms? Or does their budget limit them to a basic
house?
Before you start to learn details of the SystemVerilog language, you need
to understand how you plan to verify your particular design and how this
influences the testbench structure. Just as all houses have kitchens, bedrooms,
and bathrooms, all testbenches share some common structure of stimulus generation
and response checking. This chapter introduces a set of guidelines and
coding styles for designing and constructing a testbench that meets your particular
needs. These techniques use some of the same concepts as shown in
the Verification Methodology Manual for SystemVerilog (VMM), Bergeron et
al. (2006), but without the base classes.
The most important principle you can learn as a verification engineer is:
“Bugs are good.” Don’t shy away from finding the next bug, do not hesitate to
ring a bell each time you uncover one, and furthermore, always keep track of
each bug found. The entire project team assumes there are bugs in the design,
so each bug found before tape-out is one fewer that ends up in the customer’s
hands. You need to be as devious as possible, twisting and torturing the
design to extract all possible bugs now, while they are still easy to fix. Don’t
let the designers steal all the glory — without your craft and cunning, the
design might never work!
This book assumes you already know the Verilog language and want to
learn the SystemVerilog Hardware Verification Language (HVL). Some of
the typical features of an HVL that distinguish it from a Hardware Description
Language such as Verilog or VHDL are
Constrained-random stimulus generation
Functional coverage
Higher-level structures, especially Object Oriented Programming
Multi-threading and interprocess communication
Support for HDL types such as Verilog’s 4-state values
Tight integration with event-simulator for control of the design
There are many other useful features, but these allow you to create testbenches
at a higher level of abstraction than you are able to achieve with an
HDL or a programming language such as C.
should you begin? Do you start by choosing doors and windows, picking out
paint and carpet colors, or selecting bathroom fixtures? Of course not! First
you must consider how the owners will use the space, and their budget, so you
can decide what type of house to build. Questions you should consider are; do
they enjoy cooking and want a high-end kitchen, or will they prefer watching
movies in the home theater room and eating takeout pizza? Do they want a
home office or extra bedrooms? Or does their budget limit them to a basic
house?
Before you start to learn details of the SystemVerilog language, you need
to understand how you plan to verify your particular design and how this
influences the testbench structure. Just as all houses have kitchens, bedrooms,
and bathrooms, all testbenches share some common structure of stimulus generation
and response checking. This chapter introduces a set of guidelines and
coding styles for designing and constructing a testbench that meets your particular
needs. These techniques use some of the same concepts as shown in
the Verification Methodology Manual for SystemVerilog (VMM), Bergeron et
al. (2006), but without the base classes.
The most important principle you can learn as a verification engineer is:
“Bugs are good.” Don’t shy away from finding the next bug, do not hesitate to
ring a bell each time you uncover one, and furthermore, always keep track of
each bug found. The entire project team assumes there are bugs in the design,
so each bug found before tape-out is one fewer that ends up in the customer’s
hands. You need to be as devious as possible, twisting and torturing the
design to extract all possible bugs now, while they are still easy to fix. Don’t
let the designers steal all the glory — without your craft and cunning, the
design might never work!
This book assumes you already know the Verilog language and want to
learn the SystemVerilog Hardware Verification Language (HVL). Some of
the typical features of an HVL that distinguish it from a Hardware Description
Language such as Verilog or VHDL are
Constrained-random stimulus generation
Functional coverage
Higher-level structures, especially Object Oriented Programming
Multi-threading and interprocess communication
Support for HDL types such as Verilog’s 4-state values
Tight integration with event-simulator for control of the design
There are many other useful features, but these allow you to create testbenches
at a higher level of abstraction than you are able to achieve with an
HDL or a programming language such as C.
下载该资料的人也在下载
下载该资料的人还在阅读
更多 >
- IEEE SystemVerilog标准:统一的硬件设计规范和验证语言 0次下载
- 利用Systemverilog+UVM搭建soc验证环境 5次下载
- SystemVerilog的正式验证和混合验证 24次下载
- 16位CRC验证码生成VI工具下载 54次下载
- 符合验证方法手册VMM的基于SystemVerilog事务的测试平台详细介绍 2次下载
- 基于SystemVerilog的I2C总线模块验证 27次下载
- 基于SystemVerilog语言的验证方法学介绍 52次下载
- OVM实现了可重用的验证平台
- 如何采用SystemVerilog来改善基于FPGA的ASI
- 基于事件结构的SystemVerilog指称语义
- SystemVerilog for Design(Secon 0次下载
- SystemVerilog的验证方法手册
- SystemVerilog的断言手册
- SystemVerilog Assertion Handbo
- SystemVerilog 3.1a语言参考手册
- 分享一些SystemVerilog的coding guideline 558次阅读
- SystemVerilog在硬件设计部分有哪些优势 925次阅读
- SystemVerilog的随机约束方法 1167次阅读
- 如何实现全面的SystemVerilog语法覆盖 484次阅读
- SystemVerilog中的Semaphores 3053次阅读
- SystemVerilog语言中的Upcasting和Downcasting概念解析 1239次阅读
- SystemVerilog中的Shallow Copy 759次阅读
- Systemverilog中的union 823次阅读
- SystemVerilog中的struct 2213次阅读
- SystemVerilog中的package 1085次阅读
- SystemVerilog中可以嵌套的数据结构 1448次阅读
- SystemVerilog中的操作方法 2473次阅读
- SystemVerilog中$cast的应用 2559次阅读
- Systemverilog event的示例 1382次阅读
- 基于VMM验证方法学的MCU验证环境 3189次阅读
下载排行
本周
- 1电子电路原理第七版PDF电子教材免费下载
- 0.00 MB | 1490次下载 | 免费
- 2单片机典型实例介绍
- 18.19 MB | 92次下载 | 1 积分
- 3S7-200PLC编程实例详细资料
- 1.17 MB | 27次下载 | 1 积分
- 4笔记本电脑主板的元件识别和讲解说明
- 4.28 MB | 18次下载 | 4 积分
- 5开关电源原理及各功能电路详解
- 0.38 MB | 10次下载 | 免费
- 6基于AT89C2051/4051单片机编程器的实验
- 0.11 MB | 4次下载 | 免费
- 7蓝牙设备在嵌入式领域的广泛应用
- 0.63 MB | 3次下载 | 免费
- 89天练会电子电路识图
- 5.91 MB | 3次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 2PADS 9.0 2009最新版 -下载
- 0.00 MB | 66304次下载 | 免费
- 3protel99下载protel99软件下载(中文版)
- 0.00 MB | 51209次下载 | 免费
- 4LabView 8.0 专业版下载 (3CD完整版)
- 0.00 MB | 51043次下载 | 免费
- 5555集成电路应用800例(新编版)
- 0.00 MB | 33562次下载 | 免费
- 6接口电路图大全
- 未知 | 30320次下载 | 免费
- 7Multisim 10下载Multisim 10 中文版
- 0.00 MB | 28588次下载 | 免费
- 8开关电源设计实例指南
- 未知 | 21539次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935053次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537791次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420026次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233045次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191183次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183277次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138039次下载 | 免费
评论
查看更多