资料介绍
Inventors have long dreamed of creating machines that think. This desire dates back to at least the time of ancient Greece. The mythical figures Pygmalion, Daedalus, and Hephaestus may all be interpreted as legendary inventors, and Galatea, Talos, and Pandora may all be regarded as artificial life (Ovid and Martin, 2004; Sparkes, 1996; Tandy, 1997)。 When programmable computers were first conceived, people wondered whether such machines might become intelligent, over a hundred years before one was built (Lovelace, 1842)。 Today, artificial intelligence (AI) is a thriving field with many practical applications and active research topics. We look to intelligent software to automate routine labor, understand speech or images, make diagnoses in medicine and support basic scientific research. In the early days of artificial intelligence, the field rapidly tackled and solved problems that are intellectually difficult for human beings but relatively straightforward for computers—problems that can be described by a list of formal, math- ematical rules. The true challenge to artificial intelligence proved to be solving the tasks that are easy for people to perform but hard for people to describe formally—problems that we solve intuitively, that feel automatic, like recognizing spoken words or faces in images. This book is about a solution to these more intuitive problems. This solution is to allow computers to learn from experience and understand the world in terms of a hierarchy of concepts, with each concept defined in terms of its relation to simpler concepts. By gathering knowledge from experience, this approach avoids the need for human operators to formally specify all of the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones. If we draw a graph showing how theseconcepts are built on top of each other, the graph is deep, with many layers. For this reason, we call this approach to AI deep learning.
- 《平板显示技术书籍》应根裕主编 0次下载
- 8051单片机C51编程电子版书籍 0次下载
- Learning MATLAB英文版电子资料下载 0次下载
- 基于双估计器的Speedy Q-learning算法 2次下载
- uCOS-III中文版及英文版书籍下载 0次下载
- 冰点还原精灵(Deep Freeze) DFS7.2官方原版+注册码 0次下载
- 《智能仪器设计实验指导书》电子书籍.pdf 0次下载
- 学习射频必须要读的书籍推荐 49次下载
- [android.开发书籍].OReilly.-.Learnin 1次下载
- uCOS-ii中文书 0次下载
- ucos-ii中文书籍 6次下载
- Xilinx_ISE9.1使用全流程中文书 0次下载
- 基于deep_learning的语音识别 22次下载
- Deep Web数据源自动分类
- LabVIEW for Everyone(经典英文书籍)
- 人工智能、机器学习和深度学习是什么 644次阅读
- 怎样使用Bevy和dfdx解决经典的Cart Pole问题呢 585次阅读
- 如何使用Excel和TF实现Transformer详细步骤说明 3830次阅读
- Linux学习书籍推荐Linux就该这么学 4721次阅读
- 为 Learning-to-Rank 打造的可扩展 TensorFlow 库 4044次阅读
- 通过深度学习方法为黑白老照片自动上色,带我们重新忆起那段老时光! 1.3w次阅读
- Q Learning算法学习 3574次阅读
- 兼具动态规划DP和蒙特卡洛MC优点的TD Learning算法 3379次阅读
- 关于TD Learning算法的分析 1829次阅读
- 机器学习算法与Python学习简单的编码规范 3615次阅读
- 模拟电路书籍推荐排行榜 4w次阅读
- 软件测试书籍有哪些_软件测试书籍推荐 1.5w次阅读
- c语言入门书籍推荐 4.6w次阅读
- java入门经典书籍推荐 1.9w次阅读
- Z1上搭建二值神经网络(BNN) 3959次阅读
下载排行
本周
- 1电子电路原理第七版PDF电子教材免费下载
- 0.00 MB | 1490次下载 | 免费
- 2单片机典型实例介绍
- 18.19 MB | 92次下载 | 1 积分
- 3S7-200PLC编程实例详细资料
- 1.17 MB | 27次下载 | 1 积分
- 4笔记本电脑主板的元件识别和讲解说明
- 4.28 MB | 18次下载 | 4 积分
- 5开关电源原理及各功能电路详解
- 0.38 MB | 10次下载 | 免费
- 6基于AT89C2051/4051单片机编程器的实验
- 0.11 MB | 4次下载 | 免费
- 7蓝牙设备在嵌入式领域的广泛应用
- 0.63 MB | 3次下载 | 免费
- 89天练会电子电路识图
- 5.91 MB | 3次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 2PADS 9.0 2009最新版 -下载
- 0.00 MB | 66304次下载 | 免费
- 3protel99下载protel99软件下载(中文版)
- 0.00 MB | 51209次下载 | 免费
- 4LabView 8.0 专业版下载 (3CD完整版)
- 0.00 MB | 51043次下载 | 免费
- 5555集成电路应用800例(新编版)
- 0.00 MB | 33562次下载 | 免费
- 6接口电路图大全
- 未知 | 30320次下载 | 免费
- 7Multisim 10下载Multisim 10 中文版
- 0.00 MB | 28588次下载 | 免费
- 8开关电源设计实例指南
- 未知 | 21539次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935053次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537791次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420026次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233045次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191183次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183277次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138039次下载 | 免费
评论
查看更多